Hemicellulose is the second most abundant biomass in the world. Because of its
unique chemical structure, hemicellulose has attracted more and more research
and industry application under the background of fossil resource shortage and
drawbacks. Hemicellulose
is tended to be modified with esterification, etherification, cross-linkage and so
on. These reactions change hemicellulose properties, so that it could be
applied in many fields such as medical field, films, hydrogels, conductive
polymers. Herein, we reviewed structure, isolation, reaction and applications
of hemicellulose. Especially the useful pathways to change the hydrophilic
character of hemicelluloses to hydrophobic are reviewed and several
applications of these materials are discussed.
References
[1]
Finnerty, W.R. (1992) Fossil Resource Biotechnology: Challenges and Prospects. Current Opinion in Biotechnology, 3, 277-282.
https://doi.org/10.1016/0958-1669(92)90104-Q
[2]
Brower, K.R. (2006) Measuring the Efficiency of Biomass Energy. Science, 312, 1744-1745. https://doi.org/10.1126/science.312.5781.1744
[3]
McCann, M.C. and Carpita, N.C. (2008) Designing the Deconstruction of Plant Cell Walls. Current Opinion in Plant Biology, 11, 314-320.
https://doi.org/10.1016/j.pbi.2008.04.001
[4]
Sanders, J., Scott, E., Weusthuis, R. and Mooibroek, H. (2007) Bio-Refinery as the Bio-Inspired Process to Bulk Chemicals. Macromolecular Bioscience, 7, 105-117.
https://doi.org/10.1002/mabi.200600223
[5]
Sjostrom, E. (1993) The Structure of Wood. In: Sjostrom, E., Ed., Wood Chemistry, Elsevier, Amsterdam, 1-20. https://doi.org/10.1016/B978-0-08-092589-9.50005-X
[6]
Jara, R. (2010) The Removal of Wood Components from Hardwood by Hot Water. PhD Thesis.
[7]
Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61, 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
[8]
Cunha, A.G. and Gandini, A. (2010) Turning Polysaccharides into Hydrophobic Materials: A Critical Review. Part 2. Hemicelluloses, Chitin/Chitosan, Starch, Pectin and Alginates. Cellulose, 17, 1045-1065. https://doi.org/10.1007/s10570-010-9435-5
[9]
Ebringerová, A. (2005) Structural Diversity and Application Potential of Hemicelluloses. Macro-Molecular Symposia, 232, 1-12.
https://doi.org/10.1002/masy.200551401
[10]
Ebringerová, A. and Heinze, T. (2000) Xylan and Xylan Derivatives-Biopolymers with Valuable Properties, 1. Naturally Occurring Xylans Structures, Isolation Procedures and Properties. Macromolecular Rapid Communications, 21, 542-556.
https://doi.org/10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7
[11]
Hu, L.S., Du, M.H. and Zhang, J.P. (2018) Hemicellulose-Based Hydrogels Present Status and Application Prospects: A Brief Review. Open Journal of Forestry, 8, 15-28. https://doi.org/10.4236/ojf.2018.81002
[12]
Ayoub, A., Venditti, R.A., Pawlak, J.J., Sadeghifar, H. and Salam, A. (2013) Development of an Acetylation Reaction of Switchgrass Hemicellulose in Ionic Liquid without Catalyst. Industrial Crops and Products, 44, 306-314.
https://doi.org/10.1016/j.indcrop.2012.10.036
[13]
Salam, A., Venditti, R.A., Pawlak, J.J. and El-Tahlawy, K. (2011) Crosslinked Hemicellulose Citrate-Chitosan Aerogel Foams. Carbohydrate Polymers, 84, 1221-1229.
https://doi.org/10.1016/j.carbpol.2011.01.008
[14]
Nguyen, Q.A., Tucker, M.P., Keller, F.A. and Eddy, F.P. (2000) Two-Stage Dilute-Acid Pretreatment of Softwoods. Applied Biochemistry and Biotechnology, 84-86, 561-576. https://doi.org/10.1385/ABAB:84-86:1-9:561
[15]
Grous, W.R., Converse, A.O. and Grethlein, H.E. (1986) Effect of Steam Explosion Pretreatment on Pore Size and Enzymatic Hydrolysis of Poplar. Enzyme and Microbial Technology, 8, 274-280. https://doi.org/10.1016/0141-0229(86)90021-9
[16]
Egüés, I., Sanchez, C., Mondragon, I. and Labidi, J. (2012) Effect of Alkaline and Autohydrolysis Processes on the Purity of Obtained Hemicelluloses from Corn Stalks. Bioresource Technology, 103, 239-248.
https://doi.org/10.1016/j.biortech.2011.09.139
[17]
Doner, L.W. and Hicks, K.B. (1997) Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction. Cereal Chemistry, 74, 176-181.
https://doi.org/10.1094/CCHEM.1997.74.2.176
[18]
Hasegawa, I., Tabata, K., Okuma, O. and Mae, K. (2004) New Pretreatment Methods Combining a Hot Water Treatment and Water/Acetone Extraction for Thermochemical Conversion of Biomass. Energy & Fuels, 18, 755-760.
https://doi.org/10.1021/ef030148e
[19]
Palm, M. and Zacchi, G. (2003) Extraction of Hemicellulosic Oligosaccharides from Spruce Using Microwave Oven or Steam Treatment. Biomacromolecules, 4, 617-623. https://doi.org/10.1021/bm020112d
[20]
Azhar, S., Henriksson, G., Theliander, H. and Lindstrom, M.E. (2015) Extraction of Hemicelluloses from Fiberized Spruce Wood. Carbohydrate Polymers, 117, 19-24.
https://doi.org/10.1016/j.carbpol.2014.09.050
[21]
Froschauer, C., Hummel, M., Iakovlev, M., Roselli, A., Schottenberger, H. and Sixta, H. (2013) Separation of Hemicellulose and Cellulose from Wood Pulp by Means of Ionic Liquid/Cosolvent Systems. Biomacromolecules, 14, 1741-1750.
https://doi.org/10.1021/bm400106h
[22]
Dibble, D.C., Li, C.L., Sun, L., George, A., Cheng, A., Cetinkol, O.P., Benke, P., Holmes, B.M., Singh, S. and Simmons, B.A. (2011) A Facile Method for the Recovery of Ionic Liquid and Lignin from Biomass Pretreatment. Green Chemistry, 13, 3255-3264. https://doi.org/10.1039/c1gc15111h
[23]
Lee, J.M., Shi, J., Venditti, R.A. and Jameel, H. (2009) Autohydrolysis Pretreatment of Coastal Bermuda Grass for Increased Enzyme Hydrolysis. Bioresource Technology, 100, 6434-6441. https://doi.org/10.1016/j.biortech.2008.12.068
[24]
Knappert, D., Grethlein, H. and Converse, A. (1980) Partial Acid Hydrolysis of Cellulosic Materials as a Pretreatment for Enzymatic Hydrolysis. Biotechnology and Bioengineering, 22, 1449-1463. https://doi.org/10.1002/bit.260220711
[25]
Farhat, W., Venditti, R.A., Hubbe, M., Taha, M., Becquart, F. and Ayoub, A. (2017) A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem, 10, 305-323. https://doi.org/10.1002/cssc.201601047
[26]
Peng, X.-W., Ren, J.-L., Zhong, L.-X. and Sun, R.-C. (2012) Synthesis and Characterization of Amphoteric Xylan-Type Hemicelluloses by Microwave Irradiation. Journal of Agricultural and Food Chemistry, 60, 1695-1702.
https://doi.org/10.1021/jf204522k
[27]
Vega, B., Petzold-Welcke, K., Fardim, P. and Heinze, T. (2012) Studies on the Fibre Surfaces Modified with Xylan Polyelectrolytes. Carbohydrate Polymers, 89, 768-776. https://doi.org/10.1016/j.carbpol.2012.04.006
[28]
Bigand, V., Pinel, C., Da Silva Perez, D., Rataboul, F., Huber, P. and Conil, M.P. (2011) Cationisation of Galactomannan and Xylan Hemicelluloses. Carbohydrate Polymers, 85, 138-148. https://doi.org/10.1016/j.carbpol.2011.02.005
[29]
Heinze, T., Petzold, K. and Schubert, S. (2008) Novel Nanoparticles Based on Xylan. Cellulose Chemistry and Technology, 41, 13-18.
[30]
Petzold, K., Schwikal, K. and Heinze, T. (2006) Carboxymethyl Xylan—Synthesis and Detailed Structure Characterization. Carbohydrate Polymers, 64, 292-298.
https://doi.org/10.1016/j.carbpol.2005.11.037
[31]
Simkovic, I. and Alfoldi, J. (1990) Acetylation of (4-o-methyl-d-glucurono)-d-xylan under Homogeneous Conditions Using Trifluoroacetic Acid-Acetic Anhydride. Carbohydrate Research, 201, 346-348.
https://doi.org/10.1016/0008-6215(90)84251-O
[32]
Fang, J. (2002) The Preparation and Characterisation of a Series of Chemically Modified Potato Starches. Carbohydrate Polymers, 47, 245-252.
https://doi.org/10.1016/S0144-8617(01)00187-4
[33]
Peng, X.-W., Ren, J.-L. and Sun, R.-C. (2010) Homogeneous Esterification of Xylan-Rich Hemicelluloses with Maleic Anhydride in Ionic Liquid. Biomacromolecules, 11, 3519-3524. https://doi.org/10.1021/bm1010118
[34]
Fundador, N.G.V., Enomoto-Rogers, Y., Takemura, A. and Iwata, T. (2012) Acetylation and Characterization of Xylan from Hardwood Kraft Pulp. Carbohydrate Polymers, 87, 170-176. https://doi.org/10.1016/j.carbpol.2011.07.034
[35]
Ren, J.L., Sun, R.C., Liu, C.F., Cao, Z.N. and Luo, W. (2007) Acetylation of Wheat Straw Hemicelluloses in Ionic Liquid Using Iodine as a Catalyst. Carbohydrate Polymers, 70, 406-414. https://doi.org/10.1016/j.carbpol.2007.04.022
[36]
Sun, R.C., Tomkinson, J., Ma, P.L. and Liang, S.F. (2000) Comparative Study of Hemicelluloses from Rice Straw by Alkali and Hydrogen Peroxide Treatments. Carbohydrate Polymers, 42, 111-122.
https://doi.org/10.1016/S0144-8617(99)00136-8
[37]
Freire, C.S.R., Silvestre, A.J.D., Pascoal Neto, C., Belgacem, M.N. and Gandini, A. (2006) Controlled Heterogeneous Modification of Cellulose Fibers with Fatty Acids: Effect of Reaction Conditions on the Extent of Esterification and Fiber Properties. Journal of Applied Polymer Science, 100, 1093-1102.
https://doi.org/10.1002/app.23454
[38]
Sebti, I., Ham-Pichavant, F. and Coma, V. (2002) Edible Bioactive Fatty Acid-Cellulosic Derivative Composites Used in Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 50, 4290-4294.
https://doi.org/10.1021/jf0115488
[39]
Sun, X.-F., Sun, R.-C. and Sun, J.-X. (2004) Oleoylation of Sugarcane Bagasse Hemicelluloses Using n-Bromosuccinimide as a Catalyst. Journal of the Science of Food and Agriculture, 84, 800-810. https://doi.org/10.1002/jsfa.1735
[40]
Tressaud, A., Durand, E., Labrugère, C., Kharitonov, A.P. and Kharitonova, L.N. (2007) Modification of Surface Properties of Carbon-Based and Polymeric Materials through Fluorination Routes: From Fundamental Research to Industrial Applications. Journal of Fluorine Chemistry, 128, 378-391.
https://doi.org/10.1016/j.jfluchem.2006.12.015
[41]
Grondahl, M., Gustafsson, A. and Gatenholm, P. (2006) Gas-Phase Surface Fluorination of Arabinoxylan Films. Macromolecules, 39, 2718-2721.
https://doi.org/10.1021/ma052066q
[42]
Peng, X.-W., Ren, J.-L., Zhong, L.-X., Peng, F. and Sun, R.-C. (2011) Xylan-Rich Hemicelluloses-Graft-Acrylic Acid Ionic Hydrogels with Rapid Responses to pH, Salt, and Organic Solvents. Journal of Agricultural and Food Chemistry, 59, 8208-8215.
https://doi.org/10.1021/jf201589y
[43]
Maleki, L., Edlund, U. and Albertsson, A.-C. (2015) Thiolated Hemicellulose as a Versatile Platform for One-Pot Click-Type Hydrogel Synthesis. Biomacromolecules, 16, 667-674. https://doi.org/10.1021/bm5018468
[44]
Ren, J.L., Peng, X.W., Zhong, L.X., Peng, F. and Sun, R.C. (2012) Novel Hydrophobic Hemicelluloses: Synthesis and Characteristic. Carbohydrate Polymers, 89, 152-157. https://doi.org/10.1016/j.carbpol.2012.02.064
[45]
Pourchez, J., Govin, A., Grosseau, P., Guyonnet, R., Guilhot, B. and Ruot, B. (2006) Alkaline Stability of Cellulose Ethers and Impact of Their Degradation Products on Cement Hydration. Cement and Concrete Research, 36, 1252-1256.
https://doi.org/10.1016/j.cemconres.2006.03.028
[46]
Laine, C., Harlin, A., Hartman, J., Hyvarinen, S., Kammiovirta, K., Krogerus, B., Pajari, H., Rautkoski, H., Setala, H., Sievanen, J., Uotila, J. and Vaha-Nissi, M. (2013) Hydroxyalkylated Xylans—Their Synthesis and Application in Coatings for Packaging and Paper. Industrial Crops and Products, 44, 692-704.
https://doi.org/10.1016/j.indcrop.2012.08.033
[47]
Edlund, U., Ryberg, Y.Z. and Albertsson, A.-C. (2010) Barrier Films from Renewable Forestry Waste. Biomacromolecules, 11, 2532-2538.
https://doi.org/10.1021/bm100767g
[48]
Mikkonen, K.S., Heikkila, M.I., Helén, H., Hyvonen, L. and Tenkanen, M. (2010) Spruce Galactoglucomannan Films Show Promising Barrier Properties. Carbohydrate Polymers, 79, 1107-1112. https://doi.org/10.1016/j.carbpol.2009.10.049
[49]
Alekhina, M., Mikkonen, K.S., Alén, R., Tenkanen, M. and Sixta, H. (2014) Carboxymethylation of Alkali Extracted Xylan for Preparation of Bio-Based Packaging Films. Carbohydrate Polymers, 100, 89-96.
https://doi.org/10.1016/j.carbpol.2013.03.048
[50]
Methacanon, P., Chaikumpollert, O., Thavorniti, P. and Suchiva, K. (2003) Hemicellulosic Polymer from Vetiver Grass and Its Physicochemical Properties. Carbohydrate Polymers, 54, 335-342. https://doi.org/10.1016/S0144-8617(03)00182-6
[51]
Mikkonen, K.S. and Tenkanen, M. (2012) Sustainable Food-Packaging Materials Based on Future Biorefinery Products: Xylans and Mannans. Trends in Food Science Technology, 28, 90-102. https://doi.org/10.1016/j.tifs.2012.06.012
[52]
Hansen, N.M.L. and Plackett, D. (2008) Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules, 9, 1493-1505.
https://doi.org/10.1021/bm800053z
[53]
Tatar, F., Tunc, M.T., Dervisoglu, M., Cekmecelioglu, D. and Kahyaoglu, T. (2014) Evaluation of Hemicellulose as a Coating Material with Gum Arabic for Food Microencapsulation. Food Research International, 57, 168-175.
https://doi.org/10.1016/j.foodres.2014.01.022
[54]
Kennedy, J.F., Methacanon, P., Lloyd, L.L., Paterson, M. and Knill, C.J. (1997) Carbohydrate Polymers as Wound Management Aids. Carbohydrate Polymers, 34, 422.
https://doi.org/10.1016/S0144-8617(97)87338-9
[55]
Miraftab, M., Qiao, Q., Kennedy, J.F., Anand, S.C. and Groocock, M.R. (2003) Fibres for Wound Dressings Based on Mixed Carbohydrate Polymer Fibres. Carbohydrate Polymers, 53, 225-231. https://doi.org/10.1016/S0144-8617(03)00108-5
[56]
Melandri, D., De Angelis, A., Orioli, R., Ponzielli, G., Lualdi, P., Giarratana, N. and Reiner, V. (2006) Use of a New Hemicellulose Dressing (veloderm® ) for the Treatment of Split-Thickness Skin Graft Donor Sites: A Within-Patient Controlled Study. Burns, 32, 964-972. https://doi.org/10.1016/j.burns.2006.03.013
[57]
Sun, X.-F., Wang, H.H., Jing, Z.X. and Mohanathas, R. (2013) Hemicellulose-Based Ph-Sensitive and Biodegradable Hydrogel for Controlled Drug Delivery. Carbohydrate Polymers, 92, 1357-1366. https://doi.org/10.1016/j.carbpol.2012.10.032
[58]
Zhao, W.F., Odelius, K., Edlund, U., Zhao, C.S. and Albertsson, A.-C. (2015) In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules, 16, 2522-2528.
https://doi.org/10.1021/acs.biomac.5b00801
[59]
Maleki, L., Edlund, U. and Albertsson, A.-C. (2014) Unrefined Wood Hydrolysates Are Viable Reactants for the Reproducible Synthesis of Highly Swellable Hydrogels. Carbohydrate Polymers, 108, 281-290. https://doi.org/10.1016/j.carbpol.2014.02.060
[60]
Zhong, L.-X., Peng, X.-W., Yang, D., Cao, X.-F. and Sun, R.-C. (2013) Long-Chain Anhydride Modification: A New Strategy for Preparing Xylan Films. Journal of Agricultural and Food Chemistry, 61, 655-661. https://doi.org/10.1021/jf304818f
[61]
Owens, R.M. and Malliaras, G.G. (2010) Organic Electronics at the Interface with Biology. MRS Bulletin, 35, 449-456. https://doi.org/10.1557/mrs2010.583
[62]
Detsch, R., Will, J., Hum, J., Roether, J.A. and Boccaccini, A.R. (2018) Biomaterials. In: Cell Culture Technology, Springer International Publishing, Berlin, 91-105.
https://doi.org/10.1007/978-3-319-74854-2_6
[63]
Zhao, W.F., Glavas, L., Odelius, K., Edlund, U. and Albertsson, A.-C. (2014) Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior. Chemistry of Materials, 26, 4265-4273. https://doi.org/10.1021/cm501852w
[64]
Zhao, W.F., Glavas, L., Odelius, K., Edlund, U. and Albertsson, A.-C. (2014) A Robust Pathway to Electrically Conductive Hemicellulose Hydrogels with High and Controllable Swelling Behavior. Polymer, 55, 2967-2976.
https://doi.org/10.1016/j.polymer.2014.05.003
[65]
Kelly, G.S. (1999) Larch Arabinogalactan: Clinical Relevance of a Novel Immune-Enhancing Polysaccharide. Alternative Medicine Review: A Journal of Clinical Therapeutic, 4, 96-103.
[66]
Apostolopoulos, V., Pietersz, G.A., Tsibanis, A., Tsikkinis, A., Drakaki, H., Loveland, B.E., Piddlesden, S.J., Plebanski, M., Pouniotis, D.S., Alexis, M.N., et al. (2006) Pilot Phase III Immunotherapy Study in Early-Stage Breast Cancer Patients Using Oxidized Mannan-muc1 [isrctn71711835]. Breast Cancer Research, 8, R27.
https://doi.org/10.1186/bcr1505