全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physicochemical and Microbiological Quality of Shallow Groundwater in Lomé, Togo

DOI: 10.4236/gep.2020.812010, PP. 162-179

Keywords: Shallow Groundwater, Saltwater, Nitrate, Fecal Contamination, Lome-Togo

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study aimed to assess the physicochemical and microbiological quality of shallow groundwater tapped by private boreholes for water sale in Togo’s most urbanized coastal areas. Ninety-six (96) groundwater samples were collected at the water sale points for chemical and microbiological analyses using standard methods. The results showed that groundwater is predominantly acidic with fresh and brackish water of Na-Cl type. High concentrations of dissolved inorganic nitrogen (NO3- , NH4+and NO2-) and permanganate indices indicating potential organic matter were found. Among the major ions, Na+ (46.9%), Cl- (51.0%) and NO3- (50.0%) present the highest percentages of unsuitable concentrations compared to WHO guidelines. These findings indicate the control of the natural impact of seawater and lagoon system and anthropogenic pollution from domestic and urban wastes on groundwater’s physicochemical quality. About 65% of groundwater samples did not comply with the drinking water guidelines for microbial indicators, including total mesophilic flora, thermotolerant coliforms, and sulfite-reducing anaerobes. The results showed the failure of sanitation and hygiene conditions around sampling points and fecal contamination from sewage, pit latrines, septic tanks, and refuse and waste disposal. The degradation of physicochemical quality is higher in the old and high-density built-up areas. Simultaneously, microbial contamination represents a high risk of contracting waterborne or hygiene-sanitation-related diseases in the whole study area. This study provides a global view of shallow groundwater’s physicochemical and microbiological quality in the study area. Limitations and suggestions for future research are discussed.

References

[1]  Adimalla, N. (2020). Spatial Distribution, Exposure, and Potential Health Risk Assessment from Nitrate in Drinking Water from Semi-Arid Region of South India. Human and Ecological Risk Assessment: An International Journal, 26, 310-334.
https://doi.org/10.1080/10807039.2018.1508329
[2]  Affum, A. O., Osae, S. D., Nyarko, B. J. B., Afful, S., Fianko, J. R., Akiti, T. T. et al. (2015). Total Coliforms, Arsenic and Cadmium Exposure through Drinking Water in the Western Region of Ghana: Application of Multivariate Statistical Technique to Groundwater Quality. Environmental Monitoring and Assessment, 187, 1.
https://doi.org/10.1007/s10661-014-4167-x
[3]  Akouvi, A., Dray, M., Violette, S., de Marsily, G., & Zuppi, G. M. (2008). The Sedimentary Coastal Basin of Togo: Example of a Multilayered Aquifer Still Influenced by a Palaeo-Seawater Intrusion. Hydrogeology Journal, 16, 419-436.
https://doi.org/10.1007/s10040-007-0246-1
[4]  Akpataku, K. V., Rai, S. P., Gnazou, M. D.-T., Tampo, L., Bawa, L. M., Djaneye-Boundjou, G. et al. (2019). Hydrochemical and Isotopic Characterization of Groundwater in the Southeastern Part of the Plateaux Region, Togo. Hydrological Sciences Journal, 64, 983-1000.
https://doi.org/10.1080/02626667.2019.1615067
[5]  Alassane, A., Trabelsi, R., Dovonon, L., Odeloui, D., Boukari, M., Zouari, K. et al. (2015). Chemical Evolution of the Continental Terminal Shallow Aquifer in the South of Coastal Sedimentary Basin of Benin (West-Africa) Using Multivariate Factor Analysis. Journal of Water Resource and Protection, 7, 496-515.
https://doi.org/10.4236/jwarp.2015.76040
[6]  Anornu, G., Gibrilla, A., & Adomako, D. (2017). Tracking Nitrate Sources in Groundwater and Associated Health Risk for Rural Communities in the White Volta River Basin of Ghana Using Isotopic Approach (δ15N, δ18O-NO3 and 3H). Science of the Total Environment, 603-604, 687-698.
https://doi.org/10.1016/j.scitotenv.2017.01.219
[7]  Appleyard, S., Wong, S., Willis-Jones, B., Angeloni, J., & Watkins, R. (2004). Groundwater Acidification Caused by Urban Development in Perth, Western Australia: Source, Distribution, and Implications for Management. Soil Research, 42, 579-585.
https://doi.org/10.1071/SR03074
[8]  Ayah, M., Grybos, M., Tampo, L., Bawa, L. M., Bril, H., & Djaneye-Boundjou, G. (2015). Qualité et pollution des eaux d’un hydrosystème littoral tropical: Cas du système lagunaire de Lomé, Togo. European Scientific Journal, 11, 95-119.
[9]  Badassan, T., Avumadi, A., Ouro-Sama, K., Gnandi, K., et al. (2020). Geochemical Composition of the Lomé Lagoon Sediments, Togo: Seasonal and Spatial Variations of Major, Trace and Rare Earth Element Concentrations. Water, 12, 3026.
https://doi.org/10.3390/w12113026
[10]  Bartram, J., Cotruvo, J. A., Exner, M., Fricker, C., & Glasmacher, A. (2003). Heterotrophic Plate Counts and Drinking-Water Safety. London: IWA Publishing.
[11]  Böhlke, J. K., Smith, R. L., & Miller, D. N. (2006). Ammonium Transport and Reaction in Contaminated Groundwater: Application of Isotope Tracers and Isotope Fractionation Studies. Water Resources Research, 42, W05411.
https://doi.org/10.1029/2005WR004349
[12]  Chidya, R. C. G., Matamula, S., Nakoma, O., & Chawinga, C. B. J. (2016). Evaluation of Groundwater Quality in Rural-Areas of Northern Malawi: Case of Zombwe Extension Planning Area in Mzimba. Physics and Chemistry of the Earth, Parts A/B/C, 93, 55-62.
https://doi.org/10.1016/j.pce.2016.03.013
[13]  Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., & Vengosh, A. (2019). Co-Occurrence of Geogenic and Anthropogenic Contaminants in Groundwater from Rajasthan, India. Science of the Total Environment, 688, 1216-1227.
https://doi.org/10.1016/j.scitotenv.2019.06.334
[14]  Cronin, A. A., Pedley, S., Hoadley, A. W., Kouonto Komou, F., Haldin, L., Gibson, J. et al. (2007). Urbanisation Effects on Groundwater Chemical Quality: Findings Focusing on the Nitrate Problem from 2 African Cities Reliant on On-Site Sanitation. Journal of Water and Health, 5, 441-454.
https://doi.org/10.2166/wh.2007.040
[15]  Da Costa, P. Y., Affaton, P., Salaj, J., Johnson, A. K. C., & Seddoh, K. (2013). Biozonation des formations sédimentaires du bassin côtier du Togo (Afrique de l’Ouest). Revue Ivoirienne des Sciences et Technologie, 21-22, 45-73.
[16]  Diaw, M. T., Cissé-Faye, S., Gaye, C. B., Niang, S., Pouye, A., Campos, L. C. et al. (2020). On-Site Sanitation Density and Groundwater Quality: Evidence from Remote Sensing and in Situ Observations in the Thiaroye Aquifer, Senegal. Journal of Water, Sanitation and Hygiene for Development.
https://doi.org/10.2166/washdev.2020.162
[17]  Douterelo, I., Boxall, J. B., Deines, P., Sekar, R., Fish, K. E., & Biggs, C. A. (2014). Methodological Approaches for Studying the Microbial Ecology of Drinking Water Distribution Systems. Water Research, 65, 134-156.
https://doi.org/10.1016/j.watres.2014.07.008
[18]  Emvoutou, H. C., Tandia, B. K., Nkot, S. N. B., Ebonji, R. C. S., Nlend, Y. B., Ekodeck, G. E. et al. (2018). Geologic Factors Controlling Groundwater Chemistry in the Coastal Aquifer System of Douala/Cameroon: Implication for Groundwater System Functioning. Environmental Earth Sciences, 77, Article No. 219.
https://doi.org/10.1007/s12665-018-7400-z
[19]  Erah, P., Akujieze, C., & Oteze, G. (2002). The Quality of Groundwater in Benin City: A Baseline Study on Inorganic Chemicals and Microbial Contaminants of Health Importance in Boreholes and Open Wells. Tropical Journal of Pharmaceutical Research, 1, 75.
https://doi.org/10.4314/tjpr.v1i2.14587
[20]  European Union Council (1998). Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Official Journal of the European Communities, 330, 32-54.
[21]  Fan, A. M. (2011). Nitrate and Nitrite in Drinking Water: A Toxicological Review. In Encyclopedia of Environmental Health (pp. 137-145). Amsterdam: Elsevier.
https://doi.org/10.1016/B978-0-444-52272-6.00563-8
[22]  Gara, T., Fengting, L., Nhapi, I., Makate, C., & Gumindoga, W. (2018). Health Safety of Drinking Water Supplied in Africa: A Closer Look Using Applicable Water-Quality Standards as a Measure. Exposure and Health, 10, 117-128.
https://doi.org/10.1007/s12403-017-0249-7
[23]  George, J., An, W., Joshi, D., Zhang, D., Yang, M., & Suriyanarayanan, S. (2015). Quantitative Microbial Risk Assessment to Estimate the Health Risk in Urban Drinking Water Systems of Mysore, Karnataka, India. Water Quality, Exposure and Health, 7, 331-338.
https://doi.org/10.1007/s12403-014-0152-4
[24]  Gibrilla, A., Bam, E. K. P., Adomako, D., Ganyaglo, S., Dampare, S. B., Ahialey, E. K. et al. (2011). Seasonal Evaluation of Raw, Treated and Distributed Water Quality from the Barekese Dam (River Offin) in the Ashanti Region of Ghana. Water Quality, Exposure and Health, 3, 157-174.
https://doi.org/10.1007/s12403-011-0053-8
[25]  Gnandi, K., Bandowe, B., Deheyn, D., Porrachia, M., Kersten, M., & Wilcke, W. (2011). Polycyclic Aromatic Hydrocarbons and Trace Metal Contamination of Coastal Sediment and Biota from Togo. Journal of Environmental Monitoring: JEM, 13, 2033-2041.
https://doi.org/10.1039/c1em10063g
[26]  Gnazou, M. D. T. (2008). Etude hydrodynamique, hydrogéochimique, isotopique et modélisation de l’aquifère du Paléocène du bassin sédimentaire côtier du Togo. Thèse de Doctorat, Lomé: Université de Lomé.
[27]  Gnazou, M. D. T., Assogba, K., Sabi, B. E., & Bawa, L. M. (2015a). Qualité physico-chimique et bactériologique des eaux utilisées dans les écoles de la préfecture de Zio (Togo). International Journal of Biological and Chemical Sciences, 9, 504-516.
https://doi.org/10.4314/ijbcs.v9i1.43
[28]  Gnazou, M. D. T., Sabi, B. E., Lavalade, J. L., Schwartz, J., Akakpo, W., & Tozo, A. (2017). Multilayered Aquifer Modeling in the Coastal Sedimentary Basin of Togo. Journal of African Earth Sciences, 125, 42-58.
https://doi.org/10.1016/j.jafrearsci.2016.10.008
[29]  Gnazou, M. D. T., Sabi, B. E., Togbe, K. A., da Costa, Y. D., & Agouda, K. (2015b). Actualisation structurale de l’aquifère du paléocène dans le bassin côtier du Togo. European Scientific Journal, ESJ, 11, 101-122.
[30]  Graniel, C. E., Morris, L. B., & Carrillo-Rivera, J. J. (1999). Effects of Urbanization on Groundwater Resources of Merida, Yucatan, Mexico. Environmental Geology, 37, 303-312.
https://doi.org/10.1007/s002540050388
[31]  Helstrup, T. (2006). Environmental Isotopic and Hydrochemical Characteristics of Groundwater from the Cretaceous-Eocene Limestone Aquifer in the Keta Basin, Ghana, and the Coastal Sedimentary Basin of Togo. PhD Thesis, Copenhagen: University of Copenhagen.
[32]  Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and Fluoride Contaminated Groundwaters: A Review of Current Technologies for Contaminants Removal. Journal of Environmental Management, 162, 306-325.
https://doi.org/10.1016/j.jenvman.2015.07.020
[33]  Kapembo, M. L., Laffite, A., Bokolo, M. K., Mbanga, A. L., Maya-Vangua, M. M., Otamonga, J.-P. et al. (2016). Evaluation of Water Quality from Suburban Shallow Wells under Tropical Conditions According to the Seasonal Variation, Bumbu, Kinshasa, Democratic Republic of the Congo. Exposure and Health, 8, 487-496.
https://doi.org/10.1007/s12403-016-0213-y
[34]  Keesari, T., Ramakumar, K. L., Prasad, M. B. K., Chidambaram, S., Perumal, P., Prakash, D. et al. (2015). Microbial Evaluation of Groundwater and Its Implications on Redox Condition of a Multi-Layer Sedimentary Aquifer System. Environmental Processes, 2, 331-346.
https://doi.org/10.1007/s40710-015-0067-5
[35]  Kuroda, K., & Fukushi, T. (2008). Groundwater Contamination in Urban Areas. In Ed. S. Takizawa (Ed.), Groundwater Management in Asian Cities: Technology and Policy for Sustainability (pp. 125-149). cSUR-UT Series: Library for Sustainable Urban Regeneration, Tokyo: Springer Japan.
https://doi.org/10.1007/978-4-431-78399-2_7
[36]  Lapworth, D. J., Nkhuwa, D. C. W., Okotto-Okotto, J., Pedley, S., Stuart, M. E., Tijani, M. N. et al. (2017). Urban Groundwater Quality in Sub-Saharan Africa: Current Status and Implications for Water Security and Public Health. Hydrogeology Journal, 25, 1093-1116.
https://doi.org/10.1007/s10040-016-1516-6
[37]  Llopis-González, A., Sánchez, A. L., Requena, P. M., & Suárez-Varela, M. M. (2014). Assessment of the Microbiological Quality of Groundwater in Three Regions of the Valencian Community (Spain). International Journal of Environmental Research and Public Health, 11, 5527-5540.
https://doi.org/10.3390/ijerph110505527
[38]  Mande, S. A.-S., Liu, M., Djaneye-Boundjou, G., Liu, F., Bawa, M. L., & Chen, H. (2012). Nitrate in Drinking Water: A Major Polluting Component of Groundwater in Gulf Region Aquifers, South of Togo. International Journal of the Physical Sciences, 7, 144-152.
https://doi.org/10.5897/IJPS11.874
[39]  Mazari-Hiriart, M., Cifuentes, E., Velázquez, E., & Calva, J. J. (2000). Microbiological Groundwater Quality and Health Indicators in Mexico City. Urban Ecosystems, 4, 91-103.
https://doi.org/10.1023/A:1011334326405
[40]  McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., Meredith, K. et al. (2020). Changes in Global Groundwater Organic Carbon Driven by Climate Change and Urbanization. Nature Communications, 11, 1279.
https://doi.org/10.1038/s41467-020-14946-1
[41]  MEAHV (2010). Politique Nationale de l’Eau au Togo.
[42]  Mohamed, M. L., Faye, S., Diongue, D. M. L., Emvoutou, H. C., Mohamed, A. S., & Jiddou, M. (2020). Salinization Processes in the Benichab Coastal Aquifer-Mauritania. International Journal of Geosciences, 11, 720-726.
https://doi.org/10.4236/ijg.2020.116020
[43]  MPRPDAT/DGSCN (2011). Quatrième Recensement Général de la Population et de l’Habitat (RGPH4): Résultats définitifs.
[44]  MPT-Togo (2013). Cadre de gestion environnemental et social du projet WARCIP-Togo.
[45]  Oga, M. S., Marlin, C., Dever, L., Filly, A., & Njitchoua, R. (2008). Hydrochemical and Isotopic Characteristics of Coastal Groundwater near Abidjan (Southern Ivory Coast). In S. Adelana, & A. MacDonald (Eds.), Applied Groundwater Studies in Africa (Vol. 13, pp. 371-389). IAH Selected Papers on Hydrogeology.
[46]  Olufemi, A. G. (2010). Assessment of Groundwater Quality and Saline Intrusions in Coastal Aquifers of Lagos Metropolis, Nigeria. Journal of Water Resource and Protection, 2, 849-853.
https://doi.org/10.4236/jwarp.2010.210100
[47]  Ontiveros-Terrazas, A. V., Villalobos-Aragón, A., Espejel-García, V. V., & Espejel-García, D. (2020). Groundwater Quality and Its Impact on Health: A Preliminary Evaluation of Dental Fluorosis in Julimes, Chihuahua, Mexico. Journal of Water Resource and Protection, 12, 545-557.
https://doi.org/10.4236/jwarp.2020.127033
[48]  Piper, A. M. (1944). A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Transactions, American Geophysical Union, 25, 914.
https://doi.org/10.1029/TR025i006p00914
[49]  Pitkänen, T., Karinen, P., Miettinen, I. T., Lettojärvi, H., Heikkilä, A., Maunula, R. et al. (2011). Microbial Contamination of Groundwater at Small Community Water Supplies in Finland. Ambio, 40, 377-390.
https://doi.org/10.1007/s13280-010-0102-8
[50]  Rodier, J., Legube, B., Merlet, N. et al. (2009). L’analyse de l’eau (9th ed.). Paris: Dunod.
[51]  Sawyer, C. N., & McCarty, P. L. (1967). Chemistry for Sanitary Engineers (2nd ed.). New York: McGraw-Hill.
[52]  Shi, X., Wang, Y., Jiao, J., Zhong, J., Wen, H., & Dong, R. (2018). Assessing Major Factors Affecting Shallow Groundwater Geochemical Evolution in a Highly Urbanized Coastal Area of Shenzhen City, China. Journal of Geochemical Exploration, 184, 17-27.
https://doi.org/10.1016/j.gexplo.2017.10.003
[53]  Shirazi, S. M., Adham, M. I., Zardari, N. H., Ismail, Z., Imran, H. M., & Mangrio, M. A. (2015). Groundwater Quality and Hydrogeological Characteristics of Malacca State in Malaysia. Journal of Water and Land Development, 24, 11-19.
https://doi.org/10.1515/jwld-2015-0002
[54]  Soncy, K., Djeri, B., Anani, K., Eklou-Lawson, M., Adjrah, Y., Karou, D. S. et al. (2015). évaluation de la qualité bactériologique des eaux de puits et de forage à Lomé, Togo. Journal of Applied Biosciences, 91, 8464.
https://doi.org/10.4314/jab.v91i1.6
[55]  Sorensen, J. P. R., Diaw, M. T., Pouye, A., Roffo, R., Diongue, D. M. L., Faye, S. C. et al. (2020). In-Situ Fluorescence Spectroscopy Indicates Total Bacterial Abundance and Dissolved Organic Carbon. Science of the Total Environment, 738, Article ID: 139419.
https://doi.org/10.1016/j.scitotenv.2020.139419
[56]  Sylvain, J. P., Collart, J., Aregba, A., & Godonou, S. (1986). Notice explicative de la carte géologique 1/500.0000 è du Togo. Direction Generale des Mines de la Géologie et du Bureau National de Recherches Minières Mémoire N°6.
[57]  Takem, G. E., Chandrasekharam, D., Ayonghe, S. N., & Thambidurai, P. (2010). Pollution Characteristics of Alluvial Groundwater from Springs and Bore Wells in Semi-Urban Informal Settlements of Douala, Cameroon, Western Africa. Environmental Earth Sciences, 61, 287-298.
https://doi.org/10.1007/s12665-009-0342-8
[58]  Takem, G. E., Kuitcha, D., Ako, A. A., Mafany, G. T., Takounjou-Fouepe, A., Ndjama, J. et al. (2015). Acidification of Shallow Groundwater in the Unconfined Sandy Aquifer of the City of Douala, Cameroon, Western Africa: Implications for Groundwater Quality and Use. Environmental Earth Sciences, 74, 6831-6846.
https://doi.org/10.1007/s12665-015-4681-3
[59]  Tiktak, A., de Nie, D. S., Piñeros Garcet, J. D., Jones, A., & Vanclooster, M. (2004). Assessment of the Pesticide Leaching Risk at the Pan-European Level. The EuroPEARL Approach. Journal of Hydrology, 289, 222-238.
https://doi.org/10.1016/j.jhydrol.2003.11.030
[60]  Totin, H. S., Amoussou, E., Odoulami, L., Edorh, P. A., Boukari, M., & Boko, M. (2013). Groundwater Pollution and the Safe Water Supply Challenge in Cotonou Town, Benin (West Africa). Proceedings of H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, July 2013, IAHS Publ. 361, 191-196.
[61]  Umezawa, Y., Hosono, T., Onodera, S., Siringan, F., Buapeng, S., Delinom, R. et al. (2008). Sources of Nitrate and Ammonium Contamination in Groundwater under Developing Asian Megacities. Science of the Total Environment, 404, 361-376.
https://doi.org/10.1016/j.scitotenv.2008.04.021
[62]  Vasudevan, U., Gantayat, R. R., Chidambaram, S., Prasanna, M. V., Venkatramanan, S., Devaraj, N. et al. (2020). Microbial Contamination and Its Associations with Major Ions in Shallow Groundwater along Coastal Tamil Nadu. Environmental Geochemistry and Health.
https://doi.org/10.1007/s10653-020-00712-1
[63]  Wen, D., Zhang, F., Zhang, E., Wang, C., Han, S., & Zheng, Y. (2013). Arsenic, Fluoride and Iodine in Groundwater of China. Journal of Geochemical Exploration, 135, 1-21.
https://doi.org/10.1016/j.gexplo.2013.10.012
[64]  WHO (2011). Guidelines for Drinking-Water Quality (4th ed.).
[65]  WHO (2018). A Global Overview of National Regulations and Standards for Drinking-Water Quality. Geneva: World Health Organization.
[66]  Yapo, O., Mambo, V., Seka, A., Ohou, M., Konan, F., Gouzile, V. et al. (2010). Evaluation de la qualité des eaux de puits à usage domestique dans les quartiers défavorisés de quatre communes d’Abidjan (Côte d’Ivoire): Koumassi, Marcory, Port-Bouet et Treichville. International Journal of Biological and Chemical Sciences, 4, 289-307.
https://doi.org/10.4314/ijbcs.v4i2.58111
[67]  Yusuf, M. A., Abiye, T. A., Butler, M. J., & Ibrahim, K. O. (2018). Origin and Residence Time of Shallow Groundwater Resources in Lagos Coastal Basin, South-West Nigeria: An isotopic Approach. Heliyon, 4, e00932.
https://doi.org/10.1016/j.heliyon.2018.e00932

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133