全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Salinity Tolerance in Argentinean Population of Bromus catharticus. Variability and Direct and Indirect Effects on Seedling Characters

DOI: 10.4236/ajps.2020.1112144, PP. 2043-2058

Keywords: Bromus catahrticus, Prairie Grass, Salinity Tolerance, Population Genetic Variability, Path Coefficient Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this research was to evaluate the salinity tolerance in prairie grass populations at the seedling stage quantifying the variability and the influence of physiological traits related to it. Salinity tolerance, in Bromus catharticus Vahl (prairie grass) populations collected in different environments of the Pampean Phytogeography region (Argentine) was evaluated at the seedling stage, using controlled condition of temperature and light. It was adopted a completely randomized design using 3 plots with three plants each one per population and two levels of treatment: 0 mM and 100 mM NaCl. Morphological, biomass and membrane stability root and shoot traits were studied. A factorial ANOVA with interaction was estimated. Then one way ANOVA for all seedling traits in both treatments allowed estimating variance components, coefficient of genotypic determination (CGD) and variation index (VI). Comparisons between populations were made using Tukey test (at 5% of probability). Phenotypic correlations among traits were calculated and then a path coefficient analysis separated direct and indirect effects at 100 and 0 mM NaCl. No significant interactions “Population × Treatment” were found for any character. The saline stress caused a pairing in the population means for the most traits. Coefficients of variation were mainly higher when the seedlings grew without stress (0 mM) because it allowed a greater potential genotypic expression. The absence of significant interactions denotes a good homeostatic capacity of the prairie grass facing that abiotic stress. Leaf length, shoot length and root dry matter were the variables with the largest direct and indirect effects. Our results showed an increase for them at salt and demonstrated intraspecific variation, possibly in relation with the origin sites. Plants under stress showed a marked resilience, in order to quickly restore the same biomass allocation patterns that occur in non-stress environment.

References

[1]  Lavado, R.S. and Taboada, M.A. (2017) Génesis y propiedades de los suelos halomórficos. In: Taleisnik, E. and Lavado, R.S., Eds., Ambientes salinos y alcalinos de la Argentina. Recursos y aprovechamiento productivo, Orientación gráfica Editora, Universidad Católica de Córdoba, Buenos Aires, 55-88.
[2]  Sánchez, R.M., Guerra, L.D. and Scherger M. (2016) Evaluación de las áreas bajo riego afectadas por salinidad y/o sodicidad en Argentina. 1a ed., Hilario Ascasubi, Ediciones INTA, Libro Digital, Buenos Aires, 74 p.
[3]  Rengasamy, P. (2006) World Salinization with Emphasis on Australia. Journal of Experimental Botany, 57, 1017-1023.
https://doi.org/10.1093/jxb/erj108
[4]  Taleisnik, A., Grunberg, K. and Santa Maria, G. (2008) La salinización de suelos en la Argentina: Su impacto en la producción agropecuaria [Soil Salinization in Argentina: Impact on Crop and Livestock Production]. Editorial Universitaria de Córdoba.
[5]  Imbellone, P.A., Giménez, J.E. and Panigatti, J.L. (2010) Procesos de sodificación y salinización. Suelos de la región pampeana. Procesos de Formación. INTA, Buenos Aires, 261-288.
[6]  Shabala, S. and Munns, R. (2012) Salinity Stress: Physiological Constraints and Adaptive Mechanisms. In: Shabala, S., Ed., Plant Stress Physiology, CAB International, Oxford, 59-93.
https://doi.org/10.1079/9781845939953.0059
[7]  Munns, R. and Gilliham, M. (2015) Salinity Tolerance of Crops—What Is the Cost? New Physilolgist, 208, 668-673.
https://doi.org/10.1111/nph.13519
[8]  Greenway, H. and Munns, R. (1980) Mechanisms of Salt Tolerance in Nonhalophytes. Plant Physiology, 31, 149-190.
https://doi.org/10.1146/annurev.pp.31.060180.001053
[9]  Silva de Aquino, A.J., Feitosa de Lacerda, C., Bezerra, M., Gomez Filho, E. and Távora Costa, R.N. (2007) Growth, Dry Mass Partitioning, and Na+, K+, and Cl- Retention by Two Sorghum Genotypes Irrigated with Saline Water. Revista Brasileira de Ciência do Solo, 31, 961-971.
https://doi.org/10.1590/S0100-06832007000500013
[10]  Tester, M. and Bacic, A. (2005) Abiotic Stress Tolerance in Grasses. From Model Plants to Crop Plants. Plant Physiology, 137, 791-793.
https://doi.org/10.1104/pp.104.900138
[11]  Rosso, B., Pagano, E., Rimieri, P. and Ríos, R. (2009) Characteristics of Bromus catherticus Vahl. (Poaceae) Natural Populations Collected in the Central Area of Argentina. Scientia Agricola (Piracicaba, Braz.), 66, 276-279.
https://doi.org/10.1590/S0103-90162009000200019
[12]  Ali, Q., Shahid, S., Hussain, A.I., Shehzad, F., Perveen, R., Habib, N., Ali, S., Iqbal, N., Waseem, M. and Hussain, S.M. (2020) Breeding Plants for Future Climates. In: Hasanuzzaman, M., Ed., Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I, Springer, Singapore, 753-795.
https://doi.org/10.1007/978-981-15-2156-0_27
[13]  Cicek, N. and Cakirlar, H. (2002) The Effect of Salinity on Some Physiological Parameters in Two Maize Cultivars. Bulgarian Journal of Plant Physiology, 28, 66-74.
[14]  Ashraf, M. (2004) Some Important Physiological Selection Criteria for Salt Tolerance in Plants. Flora: Morphology, Distribution, Functional Ecology of Plants, 199, 361-376.
https://doi.org/10.1078/0367-2530-00165
[15]  Ashraf, M. and Harris, P.I. (2004) Potential Biochemical Indicators of Salinity Tolerance in Plants. Plant Sciences, 166, 3-16.
https://doi.org/10.1016/j.plantsci.2003.10.024
[16]  Li, C.C. (1975) Path Analysis: A Primer. Boxwood Press, Pacific Grove, CA.
[17]  Andrés, A. (2005) El mejoramiento genético de las especies forrajeras. Manual de Pasturas. Bayer Crop Science, 5-10. E.E.A INTA Pergamino. http://www.produccionanimal.com.ar
[18]  Aulicino, M.B. and Arturi, M.J. (2002) Phenotypic Diversity in Argentinean Populations of Bromus catharticus (Poaceae). Genetic and Environmental Components of Quantitative Traits. New Zealand Journal of Botany, 40, 223-234.
https://doi.org/10.1080/0028825X.2002.9512785
[19]  Aulicino, M.B. and Arturi, M.J. (2008) Regional Variation in Argentinean Populations of Bromus catharticus (Poaceae) as Measured by Morphological. Anales del Jardín Botánico de Madrid, 65, 135-147.
[20]  Ashraf, M., Athar, H.R., Harris, P.J.C. and Kwon, T.R. (2008) Some Prospective Strategies for Improving Crop Salt Tolerance. Advances in Agronomy, 97, 45-110.
https://doi.org/10.1016/S0065-2113(07)00002-8
[21]  Marshall, D.R. and Brown, A.H.D. (1975) Optimum Sampling, Strategies in Genetic Conservation. In: Frankel, O.H. and Hawkes, J.G., Eds., Crop Genetic Resources for Today and Tomorrow, Cambridge University Press, Cambridge, 53-80.
[22]  Rao, S.A. and McNeilly, T. (1999) Genetic Basis of Variation for Salt Tolerance in Maize (Zea mays L). Euphytica, 108, 145-450.
https://doi.org/10.1023/A:1003612411293
[23]  Khan, A.A. and McNeilly, T. (2005) Triple Test Cross Analysis for Salinity Tolerance Based upon Seedling Root Length in Maize (Zea mays L.). Breeding Science, 55, 321-325.
https://doi.org/10.1270/jsbbs.55.321
[24]  Mansour, M.M. and Salama, K.H. (2004) Cellular Basis of Salinity Tolerance in Plants. Environmental and Experimental Botany, 52, 113-122.
https://doi.org/10.1016/j.envexpbot.2004.01.009
[25]  Mansour, M.M., Salama, K.H., Ali, F.Z. and Abou Hadid, A.F. (2005) Cell and Plant Response to NaCl in Zea mays L. Cultivars Differing in Salt Tolerance. General and Applied Plant Physiology, 31, 29-41.
[26]  Nyquist, W.E. and Baker, R.J. (1991) Estimation of Heritability and Prediction of Selection Response in Plant Populations. Critical Reviews in Plant Sciences, 10, 235-322.
https://doi.org/10.1080/07352689109382313
[27]  Sokal, R.R. and Rohlf, F.J. (1995) Biometry. W.H. Freeman and Co., New York, 887 p.
[28]  Cruz, C.D. (2001) Programa Genes: Versao Windows, aplicativo computacional em genética e estadística. UFV Vicosa, Brasil, 648 p.
[29]  Fernandez, G.C.J. (1992) Effective Selection Criteria for Assessing Plant Stress Tolerance. Proceeding of Symposium, Taiwan, 13-16 August 1992, Chapter 25.
[30]  Kenneth, B.M. (1999) Salinity Tolerance Mechanisms of Grasses in the Subfamily Chloridoideae. Crop Science, 39, 1153-1160.
https://doi.org/10.2135/cropsci1999.0011183X003900040034x
[31]  Rasmuson, K.E. and Anderson, J.E. (2002) Salinity Affects Development, Growth, and Photosynthesis Cheatgrass. Journal of Range Management, 55, 80-87.
https://doi.org/10.2307/4003267
[32]  Collado, M.B., Arturi, M.J., Aulicino, M.B. and Molina, M.C. (2010) Identification of Salt Tolerance in Seedling of Maize (Zea mays L.) with the Cell Membrane Stability Trait. International Research Journal of Plant Science, 1, 126-132.
[33]  Munns, R. (2005) Genes and Salt Tolerance: Bringing Them Together. New Phytologist, 167, 645-663.
https://doi.org/10.1111/j.1469-8137.2005.01487.x
[34]  Richards, R.A. (1996) Defining Selection Criteria to Improve Yield under Drought. Plant Grow Regulation, 20, 157-166.
https://doi.org/10.1007/BF00024012
[35]  López-Castaneda, C. and Richards, R.A. (1994) Variation in Temperate Cereals in Rainfed Environments. II. Phasic Development and Growth. Field Crops Research, 37, 63-75.
https://doi.org/10.1016/0378-4290(94)90082-5
[36]  Sanderson, M.A., Stair, D.W. and Hussey, M.A. (1997) Physiological and Morphological Responses of Perennial Forages to Stress. Advances in Agronomy, 59, 171-224.
https://doi.org/10.1016/S0065-2113(08)60055-3
[37]  Poorter, H., Niklas, K., Reich, P., Oleksyn, J., Poot, P. and Mommer, L. (2012) Biomass Allocation to Leaves, Stems and Roots: Meta-Analyses of Interspecific Variation and Environment Control. New Phytologist, 193, 30-50.
https://doi.org/10.1111/j.1469-8137.2011.03952.x
[38]  Poorter, H. and Nagel, O. (2000) The Role of Biomass Allocation in the Growth of Plants to Different Levels of Light, CO2, Nutrients and Water: A Quantitative Review. Australian Journal of Plant Physiology, 27, 595-607.
https://doi.org/10.1071/PP99173
[39]  Maas, E.V. and Hoffman, G.J. (1977) Crop Salt Tolerance: Current Assessment. Journal of the Irrigation and Drainage Division, 103, 115-134.
[40]  Grieve, C.M., Grattan, S.R. and Maas, E.V. (2012) Plant Salt Tolerance. In: Wallender, W.W. and Tanji, K.K., Eds., Agricultural Salinity Assessment and Management, 2nd Edition, Chapter 13, ASCE, Reston, VA, 405-459.
https://doi.org/10.1061/9780784411698.ch13

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133