全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数字全息显微的生物细胞质量密度的测量
Measurement of Mass Density of Cells Based on Digital Holographic Microscopy

DOI: 10.12677/OE.2020.104018, PP. 140-147

Keywords: 细胞,质量密度,数字全息
Cell
, Mass Density, Digital Holography

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞内部物质成分及浓度的改变是细胞生命研究的重要关注对象,而质量密度是反映细胞内部浓度变化的重要参数。但由于细胞是活体,内部质量密度不能直接测量。但质量密度与细胞透射光相位直接相关。应用数字全息显微技术能够在不接触且不伤害细胞的条件下,定量重构细胞透射光的相位,因此,数字全息显微技术可动态观测细胞内部变化。本文利用透射式数字全息显微系统测量洋葱表皮细胞的光学相位,并进行质壁分离实验,通过观察洋葱表皮细胞相位的变化分析实验过程中细胞内部质量密度的变化趋势及其原因,为定量细胞研究提供一种技术手段。
The changes of cell internal material composition and concentration are important objects of concern in the study of cell life, and mass density is an important parameter to reflect the changes of cell internal concentration. Since the cells are alive, the internal mass density cannot be measured directly. The mass density is directly related to the phase of transmitted beam. Digital holographic microscopy can be used to quantitatively reconstruct the phase of the transmitted light of the cell without touching or harming the cell. Therefore, digital holographic microscopy can dynamically observe the changes inside the cell. In this paper, the optical phase of onion epidermis was measured by the transmittance digital holographic microscopy system, and the plastic-wall separation experiment was carried out. By observing the phase change of onion epidermis, the variation trend of the mass density inside the cell during the experiment and its reasons were analyzed, which provided a technical means for quantitative cell research.

References

[1]  Eils, R. and Athale, C. (2003) Computational Imaging in Cell Biology. The Journal of Cell Biology, 161, 477-481.
https://doi.org/10.1083/jcb.200302097
[2]  Simon, Alberti, Amy, et al. (2019) Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 176, 419-434.
https://doi.org/10.1016/j.cell.2018.12.035
[3]  Nott, T., Petsalaki, E., Farber, P., et al. (2015) Phase Transition of a Disordered Nuage Protein Generates Environmentally Responsive Membraneless Organelles. Molecular Cell, 57, 936-947.
https://doi.org/10.1016/j.molcel.2015.01.013
[4]  Cell发布“相分离”研究指南[EB/OL]. http://www.360doc.com/content/19/0218/11/52645714_815729204.shtml, 2019-02-18.
[5]  Wang, X., Zhao, Q., Wang, L., et al. (2018) Effect of Cell Inner Pressure on Deposition Volume in Microinjection. Langmuir the ACS Journal of Surfaces & Colloids, 34, 10287-10292.
[6]  Bento, D., Rodrigues, R.O., Faustino, V., et al. (2018) Deformation of Red Blood Cells, Air Bubbles, and Droplets in Microfluidic Devices: Flow Visualizations and Measurements. Micromachines, 9, 151.
https://doi.org/10.3390/mi9040151
[7]  Morshed, A., Karawdeniya, B.I., Bandara, Y.M.N.D.Y., et al. (2020) Mechanical Characterization of Vesicles and Cells: A Review. Electrophoresis, 41, 449-470.
https://doi.org/10.1002/elps.201900362
[8]  Zeng, Y., Lu, J., Chang, X., et al. (2018) A Method to Improve the Imaging Quality in Dual-Wavelength Digital Holographic Microscopy. Scanning, 2018, Article ID 4582590.
https://doi.org/10.1155/2018/4582590
[9]  Zeng, Y., Lu, J., Hu, X., et al. (2020) Axial Displacement Measurement with High Resolution of Particle Movement Based on Compound Digital Holographic Microscopy. Optics Communications, 475, Article ID 126300.
https://doi.org/10.1016/j.optcom.2020.126300
[10]  苏康艳, 曾雅楠, 刘源, 等. 基于数字全息显微技术的生物细胞动态定量测量[J]. 光电子, 2019(2): 77-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133