|
Optoelectronics 2020
磁、电受限半导体异质结构中电子的波矢过滤效应
|
Abstract:
研究了磁、电受限半导体异质结构中电子的波矢过滤效应,实验上该结构可通过在GaAs/AlxGa1-xAs异质结表面上平行地沉积铁磁条带和肖特基金属条带实现。利用改进的转移矩阵法求解电子的薛定谔方程获得透射系数,然后透射系数对电子纵向波矢微分计算波矢过滤效率。由于磁纳米结构中电子的运动本质上是一个二维过程,明显的波矢过滤效应出现在这个结构中。波矢过滤效率与肖特基条带的宽度、位置和外加电压密切相关,使得电子的波矢过滤效应变得可操控。因此,这样一个结构可以用作可控的纳米电子动量过滤器。
Wave-vector filtering effect is explored for electrons in magnetically and electrically confined semiconductor heterostructure, which can be realized experimentally by depositing a ferromag-netic stripe and a Schottky metal stripe in parallel configuration on surface of GaAs/AlxGa1-xAs heterostructure. Adopting improved transfer matrix method to solve Schr?dinger equation, electronic transmission coefficient is calculated exactly, and then wave-vector filtering efficiency is obtained by differentiating transmission probability over longitudinal wave-vector. An obvious wave-vector filtering effect appears, due to an essentially two-dimensional process for motion of electrons in magnetic nanostructure. Besides, wave-vector filtering efficiency is associated closely with width, position and externally applied voltage of Schottky metal stripe, which makes wave-vector filtering effect become controllable. Therefore, such a device can serve as a manipulable momentum filter for nanoelectronics.
[1] | Matulis, A., Peeters, F.M. and Vasilopoulos, P. (1994) Wave-Vector-Dependent Tunneling through Magnetic Barriers. Physical Review Letters, 72, 1518. https://doi.org/10.1103/PhysRevLett.72.1518 |
[2] | Nogaret, A., Bending, S.J. and Henini, M. (2000) Resistance Resonance Effects through Magnetic Edge States. Physical Review Letters, 84, 2231. https://doi.org/10.1103/PhysRevLett.84.2231 |
[3] | Nogaret, A. (2010) Electron Dynamics in Inhomogeneous Magnetic Fields. Journal of Physics: Condensed Matter, 22, Article ID: 253201. https://doi.org/10.1088/0953-8984/22/25/253201 |
[4] | Guo, Y., Gu, B.L., Zeng, Z., Yu, J.Z. and Kawvazoe, Y. (2000) Electron-Spin Polarization in Magnetically Modulated Quantum Structures. Physical Review B, 62, 2635. https://doi.org/10.1103/PhysRevB.62.2635 |
[5] | Papp, G. and Peeters, F.M. (2001) Spin Filtering in a Magnetic-Electric Barrier Structure. Applied Physics Letters, 78, 2184. https://doi.org/10.1063/1.1360224 |
[6] | Lu, M.W., Zhang, L.D. and Yan, X.H. (2002) Spin Polarization of Electrons Tunneling through Magnetic-Barrier Nano-structures. Physical Review B, 66, Article ID: 224412. https://doi.org/10.1103/PhysRevB.66.224412 |
[7] | Zhai, F., Guo, Y. and Gu, B.L. (2002) Giant Magnetoresistance Effect in a Magnetic-Electric Barrier Structure. Physical Review B, 66, Article ID: 125305. https://doi.org/10.1103/PhysRevB.66.125305 |
[8] | Lu, M.W. and Zhang, L.D. (2003) Large Magnetoresistance Tunnelling through a Magnetically Modulated Nanostructure. Journal of Physics: Condensed Matter, 15, 1267. https://doi.org/10.1088/0953-8984/15/8/311 |
[9] | Papp, G. and Peeters, F.M. (2004) Giant Magnetoresistance in a Two-Dimensional Electron Gas Modulated by Magnetic Barriers. Journal of Physics: Condensed Matter, 16, 8275. https://doi.org/10.1088/0953-8984/16/46/014 |
[10] | Chen, X., Li, C.F. and Ban, Y. (2008) Tunable Lateral Displacement and Spin Beam Splitter for Ballistic Electrons in Two-Dimensional Magnetic-Electric Nanostructures. Physical Review B, 77, Article ID: 073307.
https://doi.org/10.1103/PhysRevB.77.073307 |
[11] | Yuan, L., Xiang, L.L., Kong, Y.H., Lu, M.W., Lan, Z.J., Zeng, A.H. and Wang, Z.Y. (2012) Goos-H?nchen Effect of Spin Electron Beams in a Parallel Double δ-Barrier Magnetic Nanostructure. European Physical Journal B, 85, Article No. 8. https://doi.org/10.1140/epjb/e2011-20690-y |
[12] | Lu, M.W., Zhang, G.L. and Chen, S.Y. (2012) Spin-Electron Beam Splitters Based on Magnetic Barrier Nanostructures. Journal of Applied Physics, 112, Article ID: 012309. |
[13] | Lu, J.D. (2009) Effect of the δ-Doping on the Electron Transport in an Antiparallel Double δ-Magnetic-Barrier Nanostructure. Applied Surface Science, 255, 7348-7350. https://doi.org/10.1016/j.apsusc.2009.03.096 |
[14] | Lu, M.W., Chen, S.Y., Zhang, G.L. and Huang, X.H. (2018) Spin Filter Based on Magnetically Confined and Spin-Orbit Coupled GaAs/AlxGa1?xAs Heterostructure. IEEE Transactions on Electron Devices, 85, 3045-3049.
https://doi.org/10.1109/TED.2018.2834914 |
[15] | Shen, L.H., Ma, W.Y., Zhang, G.L. and Yang, S.P. (2015) A Structurally-Controllable Spin Filter in a δ-Doped Magnetically Modulated Semiconductor Nanostructure with Zero Average Magnetic Field. Physica E, 71, 39-42.
https://doi.org/10.1016/j.physe.2015.03.021 |
[16] | Lu, M.W., Chen, S.Y., Zhang, G.L. and Huang, X.H. (2018) Calculations of Spin-Polarized Goos-H?nchen Displacement in Magnetically Confined GaAs/AlxGa1?xAs Nanostructure Modulated by Spin-Orbit Couplings. Journal of Physics: Condensed Matter, 30, Article ID: 145302. https://doi.org/10.1088/1361-648X/aab0b2 |
[17] | Shen, L.H., Ma, W.Y., Liu, G.X. and Yuan, L. (2016) Spatial Spin Splitter Based on a Hybrid Ferromagnet, Schottky Metal and Semiconductor Nanostructure. Journal of Magnetism and Magnetic Materials, 401, 231. |
[18] | Lu, M.W., Chen, S.Y., Zhang, G.L. and Huang, X.H. (2018) Spin Splitter Based on Magnetically Confined Semiconductor Microstructure Modulated by Spin-Orbit Coupling. IEEE Journal of the Electron Devices Society, 6, 227-232.
https://doi.org/10.1109/JEDS.2018.2793256 |
[19] | Kong, Y.H., Chen, S.Y., Li, A.H. and Fu, X. (2015) Controllable Giant Magnetoresistance Effect in a δ-Doped Magnetically Confined Semiconductor Heterostructure Nanostructure. Vacuum, 122, 43-46.
https://doi.org/10.1016/j.vacuum.2015.08.026 |
[20] | Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q. and Yang, S.P. (2016) Controllable Giant Magnetoresistance Effect by the δ-Doping in a Magnetically Confined Semiconductor Hetero-structure. Applied Surface Science, 360, 989-993.
https://doi.org/10.1016/j.apsusc.2015.11.101 |
[21] | Shen, L.H., Zhang, G.L. and Yang, D.C. (2016) Controllable GMR Device in a δ-Doped, Magnetically and Electrically Modulated, GaAs/AlxGa1?xAs Heterostructure. Physica E, 83, 450-454. https://doi.org/10.1016/j.physe.2016.01.014 |
[22] | Lu, M.W., Zhang, L.D. and Yan, X.H. (2003) Electronic Transport in Both Magnetically and Electrically Modulated Nanostructures. Nanotechnology, 14, 609. https://doi.org/10.1088/0957-4484/14/6/308 |
[23] | Lu, M.W., Chen, S.Y. and Zhang, G.L. (2017) Controllable Momentum Filter Based on a Magnetically Confined Semiconductor Heterostructure With a δ-Doping. IEEE Transactions on Electron Devices, 64, 1825-1829.
https://doi.org/10.1109/TED.2017.2671850 |
[24] | Liu, Y., Zhang, L.L., Lu, M.W., Zhou, Y.L. and Li, F. (2017) Manipulable Wave-Vector Filtering in a δ-Doped Magnetic-Barrier Nanostructure. Solid State Communications, 253, 6-9. https://doi.org/10.1016/j.ssc.2017.01.016 |
[25] | Liu, X.H., Liu, C.S., Gong, Y.J. and Tang, Z.H. (2017) Tunable Wave-Vector Filtering in a Two-Dimensional Electron Gas Modulated by Magnetic Barriers and δ-Doping. Philosophical Magazine Letters, 97, 150-157.
https://doi.org/10.1080/09500839.2017.1300350 |
[26] | Liu, G.X., Zhang, G.L., Ma, W.Y. and Shen, L.H. (2016) Spin Filtering in a Hybrid Ferromagnet, Schottky Metal and Semiconductor Nanostructure. Solid State Communications, 231-232, 6-9. https://doi.org/10.1016/j.ssc.2016.01.016 |
[27] | Liu, G.X., Zhang, L.L., Zhang, G.L. and Shen, L.H. (2017) Manipulable Wave-Vector Filtering in a Hybrid Magnetic-Electric-Barrier Nanostructure. Applied Physics A, 123, Article No. 241. https://doi.org/10.1007/s00339-017-0846-0 |
[28] | Liu, X.H., Liu, C.S., Xiao, B.F. and Lu, Y.G. (2018) Wave Vector Filtering Effect in a Magnetically and Electrically Confined GaAs/AlxGa1?xAs Heterostructure with a δ-Doping. Vacuum, 148, 173-177.
https://doi.org/10.1016/j.vacuum.2017.11.009 |
[29] | Kong, Y.H., Lu, K.Y., He, Y.P., Liu, X.H., Fu, X. and Li, A.H. (2018) Electric Control of Wave Vector Filtering in a Hybrid Magnetic-Electric-Barrier Nanostructure. Applied Physics A, 124, Article No. 440.
https://doi.org/10.1007/s00339-018-1853-5 |
[30] | Zhang, G.L., Peng, F.F. and Meng, J.S. (2019) Wave-Vector Filtering Effect in a Novel Magnetic Nanostructure with Zero Average Magnetic Field. Journal of Superconductivity and Novel Magnetism, 32, 451-455.
https://doi.org/10.1007/s10948-019-4998-3 |
[31] | Zhou, Y.L., Lu, M.W., Cao, X.L., Huang, X.H., Huang, M.R. and Liang, D.H. (2018) Manipulation of Spin Filtering Effect in a Hybrid Magnetic-Electric-Barrier Nanostructure with a δ-Doping. Applied Physics A, 124, Article No. 705.
https://doi.org/10.1007/s00339-018-2125-0 |
[32] | Zhai, F., Xu, H.Q. and Guo, Y. (2004) Tunable Spin Polarization in a Two-Dimensional Electron Gas Modulated by a Ferromagnetic Metal Stripe and a Schottky Metal Stripe. Physical Review B, 70, Article ID: 085308.
https://doi.org/10.1103/PhysRevB.70.085308 |
[33] | Carmona, H.A., Geim, A.K., Nogaret, A., Main, P.C., Foster, T.J., Henini, M., Beaumont, A.P. and Blamire, M.G. (1995) Two Dimensional Electrons in a Lateral Magnetic Superlattice. Physical Review Letters, 74, 3009.
https://doi.org/10.1103/PhysRevLett.74.3009 |
[34] | Kubrak, V., Rahman, F., Gallagher, B.L., Main, P.C., Henini, M., Marrows, C.H. and Howson, M.A. (1999) Magnetoresistance of a Two-Dimensional Electron Gas Due to a Single Magnetic Barrier and Its Use for Nanomagnetometry. Applied Physics Letters, 74, 2507. https://doi.org/10.1063/1.123022 |
[35] | Yang, S.P., Lu, M.W., Huang, X.H., Tang, Q. and Zhou, Y.L. (2017) Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nano-structure. Journal of Electronic Materials, 46, 1937-1942. https://doi.org/10.1007/s11664-017-5288-0 |
[36] | Jiang, Y.Q., Lu, M.W., Huang, X.H., Yang, S.P. and Tang, Q. (2016) Manipulable GMR Effect in a δ-Doped Magnetically Confined Semiconductor Heterostructure. Journal of Electronic Materials, 45, 2796-2801.
https://doi.org/10.1007/s11664-015-4324-1 |
[37] | Tang, Q., Lu, M.W., Huang, X.H. and Zhou, Y.L. (2018) Lateral Shifts for Spin Electrons in a Hybrid Magnetic-Electric-Barrier Nanostructure Modulated by Spin-Orbit Couplings. Journal of Superconductivity and Novel Magnetism, 31, 1383-1388. https://doi.org/10.1007/s10948-017-4324-x |