Left ventricular assist device (LVAD) is
being used increasingly in recent years for end stage heart failure as a bridge
to transplant (BTT) and also as a destination therapy (DT). Patients with end
stage heart failure have some degree of elevated pulmonary capillary wedge
pressure, causing right ventricular hypertrophy which in due course leads to
decreased dilatation of the RV and fall in cardiac output & severe
tricuspid regurgitation (TR) presenting with features of RV failure (RVF).
Implantation of LVAD improves left heart function at the cost of right ventricular
output with an incidence of 25%-30%. RVF may lead to impaired LVAD flow,
difficulty in weaning from cardio-pulmonary bypass (CPB), decreased tissue
perfusion and multi-organ failure. In this article we comprehended the
pathophysiology leading to RVF post LVAD implantation and its preoperative
predictors and the various treatment modalities for managing RVF post LVAD
implantation.
References
[1]
Kirklin, J.K., Naftel, D.C., Kormos, R.L., Stevenson, L.W., Pagani, F.D., Miller, M.A., Baldwin, J.T. and Young, J.B. (2013) Fifth INTERMACS Annual Report: Risk Factor Analysis from More than 6,000 Mechanical Circulatory Support Patients. The Journal of Heart and Lung Transplantation, 32, 141-156. https://doi.org/10.1016/j.healun.2012.12.004
[2]
Kormos, R.L., Teuteberg, J.J., Pagani, F.D., Russell, S.D., John, R., Miller, L.W., et al. (2010) Right Ventricular Failure in Patients with the HeartMate II Continuous-Flow Left Ventricular Assist Device: Incidence, Risk Factors, and Effect on Outcomes. The Journal of Thoracic and Cardiovascular Surgery, 139, 1316-1324. https://doi.org/10.1016/j.jtcvs.2009.11.020
[3]
Matthews, J.C., Koelling, T.M., Pagani, F.D. and Aaronson, K.D. (2008) The Right Ventricular Failure Risk Score a Pre-Operative Tool for Assessing the Risk of Right Ventricular Failure in Left Ventricular Assist Device Candidates. Journal of the American College of Cardiology, 51, 2163-2172. https://doi.org/10.1016/j.jacc.2008.03.009
[4]
Kukucka, M., Stepanenko, A., Potapov, E., Krabatsch, T., Redlin, M., Mladenow, A., et al. (2011) Right-to-Left Ventricular End-Diastolic Diameter Ratio and Prediction of Right Ventricular Failure with Continuous-Flow Left Ventricular Assist Devices. The Journal of Heart and Lung Transplantation, 30, 64-69. https://doi.org/10.1016/j.healun.2010.09.006
[5]
Fida, N., Loebe, M., Estep, J.D. and Guha, A. (2015) Predictors and Management of Right Heart Failure after Left Ventricular Assist Device Implantation. Methodist Debakey Cardiovascular Journal, 11, 18-23.
[6]
Topilsky, Y., Hasin, T., Oh, J.K., Borgeson, D.D., Boilson, B.A., Schirger, J.A., et al. (2011) Echocardiographic Variables after Left Ventricular Assist Device Implantation Associated with Adverse Outcome. Circulation: Cardiovascular Imaging, 4, 648-661. https://doi.org/10.1161/CIRCIMAGING.111.965335
[7]
Farrar, D.J., Compton, P.G., Hershon, J.J., Fonger, J.D. and Hill, J.D. (1985) Right Heart Interaction with the Mechanically Assisted Left Heart. World Journal of Surgery, 9, 89-102. https://doi.org/10.1007/BF01656260
[8]
Farrar, D.J. (1994) Ventricular Interactions during Mechanical Circulatory Support. Seminars in Thoracic and Cardiovascular Surgery, 6, 163-168.
[9]
Argiriou, M., Kolokotron, S.M., Sakellaridis, T., Argiriou, O., Charitos, C., Zarogoulidis, P., Katsikogiannis, N., Kougioumtzi, I., Machairiotis, N., Tsiouda, T., Tsakiridis, K. and Zarogoulidis, K. (2014) Right Heart Failure Post Left Ventricular Assist Device Implantation. Journal of Thoracic Disease, 6, S52-S59.
[10]
Fitzpatrick, J.R. III, Frederick, J.R., Hsu, V.M., Kozin, E.D., Lou O’Hara, M., Howell, E., et al. (2008) Risk Score Derived from Pre-Operative Data Analysis Predicts the Need for Biventricular Mechanical Circulatory Support. The Journal of Heart and Lung Transplantation, 27, 1286-1292. https://doi.org/10.1016/j.healun.2008.09.006
[11]
Drakos, S.G., Janicki, L., Horne, B.D., Kfoury, A.G., Reid, B.B., Clayson, S., et al. (2010) Risk Factors Predictive of Right Ventricular Failure after Left Ventricular Assist Device Implantation. American Journal of Cardiology, 105, 1030-1035. https://doi.org/10.1016/j.amjcard.2009.11.026
[12]
Ochiai, Y., McCarthy, P.M., Smedira, N.G., Banbury, M.K., Navia, J.L., Feng, J.Y., et al. (2002) Predictors of Severe Right Ventricular Failure after Implantable Left Ventricular Assist Device Insertion: Analysis of 245 Patients. Circulation, 106, I198-202.
[13]
Pagani, F.D., Miller, L.W., Russell, S.D., Aaronson, K.D., John, R., Boyle, A.J., et al. (2009) Extended Mechanical Circulatory Support with a Continuous-Flow Rotary Left Ventricular Assist Device. Journal of the American College of Cardiology, 54, 312-321. https://doi.org/10.1016/j.jacc.2009.03.055
[14]
Farrar, D.J., Hill, J.D., Pennington, D.G., McBride, L.R., Holman, W.L., Kormos, R.L., et al. (1997) Preoperative and Postoperative Comparison of Patients with Univentricular and Biventricular Support with the Thoratec Ventricular Assist Device as a Bridge to Cardiac Transplantation. The Journal of Thoracic and Cardiovascular Surgery, 113, 202-209. https://doi.org/10.1016/S0022-5223(97)70416-1
[15]
Meineri, M., Van Rensburg, A.E. and Vegas, A. (2012) Right Ventricular Failure after LVAD Implantation: Prevention and Treatment. Best Practice & Research Clinical Anaesthesiology, 26, 217-229. https://doi.org/10.1016/j.bpa.2012.03.006
[16]
Verhaert, D., Mullens, W., Borowski, A., Popovic, Z.B., Curtin, R.J., Thomas, J.D., et al. (2010) Right Ventricular Response to Intensive Medical Therapy in Advanced Decompensated Heart Failure. Circulation: Heart Failure, 3, 340-346. https://doi.org/10.1161/CIRCHEARTFAILURE.109.900134
[17]
Kato, T.S., Farr, M., Schulze, P.C., Maurer, M., Shahzad, K., Iwata, S., et al. (2012) Usefulness of Two-Dimensional Echocardiographic Parameters of the Left Side of the Heart to Predict Right Ventricular Failure after Left Ventricular Assist Device Implantation. American Journal of Cardiology, 109, 246-251. https://doi.org/10.1016/j.amjcard.2011.08.040
[18]
Aissaoui, N., Paluszkiewicz, L., Martin Gorria, G., et al. (2013) Assessment of Right Ventricle before the Implantation of Left Ventricular Assist Device by Echocardiographic Parameters (ARVADE). The Journal of Heart and Lung Transplantation, 32, S234-S235. https://doi.org/10.1016/j.healun.2013.01.599
[19]
Grant, A.D., Smedira, N.G., Starling, R.C. and Marwick, T.H. (2012) Independent and Incremental Role of Quantitative Right Ventricular Evaluation for the Prediction of Right Ventricular Failure after Left Ventricular Assist Device Implantation. Journal of the American College of Cardiology, 60, 521-528. https://doi.org/10.1016/j.jacc.2012.02.073
[20]
Haneya, A., Philipp, A., Puehler, T., Rupprecht, L., Kobuch, R., Hilker, M., et al. (2012) Temporary Percutaneous Right Ventricular Support Using a Centrifugal Pump in Patients with Postoperative Acute Refractory Right Ventricular Failure after Left Ventricular Assist Device Implantation. European Journal of Cardio-Thoracic Surgery, 41, 219-223. https://doi.org/10.1016/j.ejcts.2011.04.029
[21]
Kukucka, M., Potapov, E., Stepanenko, A., Weller, K., Mladenow, A., Kuppe, H. and Habazettl, H. (2011) Acute Impact of Left Ventricular Unloading by Left Ventricular Assist Device on the Right Ventricle Geometry and Function: Effect of Nitric Oxide Inhalation. The Journal of Thoracic and Cardiovascular Surgery, 141, 1009-1014. https://doi.org/10.1016/j.jtcvs.2010.08.010
[22]
Bojar, R.M. (2011) Cardiovascular Management. In: Bojar, R.M., Ed., Manual of Perioperative Care in Adult Cardiac Surgery, John Wiley & Sons, Ltd., Hoboken, 479. Table 11.7.
[23]
Slaughter, M.S., Pagani, F.D., Rogers, J.G., Miller, L.W., Sun, B., Russell, S.D., et al. (2010) Clinical Management of Continuous-Flow Left Ventricular Assist Devices in Advanced Heart Failure. The Journal of Heart and Lung Transplantation, 29, S1-S39. https://doi.org/10.1016/j.healun.2010.01.011
[24]
Schenk, S., McCarthy, P.M., Blackstone, E.H., Feng, J.Y., Starling, R.C., Navia, J.L., et al. (2006) Duration of Inotropic Support after Left Ventricular Assist Device Implantation: Risk Factors and Impact on Outcome. The Journal of Thoracic and Cardiovascular Surgery, 131, 447-454. https://doi.org/10.1016/j.jtcvs.2005.09.031
[25]
Kaplon, R.J., Gillinov, A.M., Smedira, N.G., Kottke-Marchant, K., Wang, I.-W., Goormastic, M. and McCarthy, P.M. (1999) Vitamin K Reduces Bleeding in Left Ventricular Assist Device Recipients. The Journal of Heart and Lung Transplantation, 18, 346-350. https://doi.org/10.1016/S1053-2498(98)00066-7
[26]
Potapov, E., Meyer, D., Swaminathan, M., Ramsay, M., El Banayosy, A., Diehl, C., et al. (2011) Inhaled Nitric Oxide after Left Ventricular Assist Device Implantation: A Prospective, Randomized, Double-Blind, Multicenter, Placebo-Controlled Trial. The Journal of Heart and Lung Transplantation, 30, 870-878. https://doi.org/10.1016/j.healun.2011.03.005
[27]
Tedford, R.J., Hemnes, A.R., Russell, S.D., Wittstein, I.S., Mahmud, M., Zaiman, A.L., et al. (2008) PDE5A Inhibitor Treatment of Persistent Pulmonary Hypertension after Mechanical Circulatory Support. Circulation: Heart Failure, 1, 213-219. https://doi.org/10.1161/CIRCHEARTFAILURE.108.796789
[28]
Kihara, S., Kawai, A., Fukuda, T., Yamamoto, N., Aomi, S., Nishida, H., et al. (2002) Effects of Milrinone for Right Ventricular Failure after Left Ventricular Assist Device Implantation. Heart & Vessels, 16, 69-71. https://doi.org/10.1007/s380-002-8320-z
[29]
Abraham, W.T., Cheng, M.L., Smoluk, G., et al. (2005) Clinical and Hemodynamic Effects of Nesiritide (Btype Natriuretic Peptide) in Patients with Decompensated Heart Failure Receiving Beta Blockers. Congestive Heart Failure, 11, 59-64.
[30]
Spillner, J., Amerini, A., Hatam, N., Rex, S., Pott, F., Goetzenich, A., et al. (2011) Pulmono-Atrial Shunt and Lung Assist to Treat Right Ventricular Failure. Frontiers in Bioscience, 16, 2342-2351. https://doi.org/10.2741/3857
[31]
Cheng, A., Williamitis, C.A. and Slaughter, M.S. (2014) Comparison of Continuous-Flow and Pulsatile-Flow Left Ventricular Assist Devices: Is There an Advantage to Pulsatility? Annals of Cardiothoracic Surgery, 3, 573-581. https://doi.org/10.3978/j.issn.2225-319x.2014.08.24