全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Secondary Metabolites and Free Amino Acid Content in Tomato with Lamiaceae Herbs Companion Planting

DOI: 10.4236/ajps.2020.1112134, PP. 1878-1889

Keywords: Basil, Growth Promotion, Hyssop, Peppermint, Root Exudate

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present experiment was conducted to evaluate the influence of Lamiaceae herbs companion planting on growth and secondary metabolites changes in tomato plants. Furthermore, the free amino acid changes in tomato due to companion planting were also evaluated using tomato-basil companionship as a model. Four-week-old seedlings of tomato were grown in a pot containing autoclaved commercial soil with basil, peppermint and hyssop as a companion plant separately in different density. Four weeks after companion planting, tomato plants under 1:1 companionship with the herbs showed significant increase in dry weights of shoots compared to control. Higher density of the herbs on the other hand expressed a growth suppression on tomato possibly due to nutrient competition. By the LC-MS analysis, shikimic acid and apigenin were identified as the major secondary compounds found in tomato plants and 1:1 companionship with basil seemed to have a positive influence on their content in tomato shoots. On the other hand, in case of peppermint and hyssop, the increase was observed in all parts of tomato plants. In addition, promotion in several free amino acid contents was also observed in tomato plants with basil companion planting compared to control. Thus, tomato plants grown with herb companion planting in 1:1 ratio seems to have a positive impact on growth of tomato. This positive influence might be related to the increase in some secondary metabolites and changes in the free amino acids observed in this study.

References

[1]  Riotte, L. (1975) Carrots Love Tomatoes: Secrets of Companion Planting for Successful Gardening. Storey Books, Pownal, Vermont.
[2]  Cunningham, S.J. (1998) Great Garden Companions: A Companion-Planting System for a Beautiful, Chemical-Free Vegetable Garden. Rodale Press, Emmaus, Pennsylvania.
[3]  Gómez-Rodríguez, O., Zavaleta-Mejía, E., González-Hernández, V.A., Livera-Munoz, M. and Cárdenas-Soriano, E. (2003) Allelopathy and Microclimatic Modification of Intercropping with Marigold on Tomato Early Blight Disease Development. Field Crops Research, 83, 27-34.
https://doi.org/10.1016/S0378-4290(03)00053-4
[4]  Bomford, M.K. (2009) Do Tomatoes Love Basil but Hate Brussels Sprouts? Competition and Land-Use Efficiency of Popularly Recommended and Discouraged Crop Mixtures in Biointensive Agriculture Systems. Journal of Sustainable Agriculture, 33, 396-417.
https://doi.org/10.1080/10440040902835001
[5]  Parker, J.E., Snyder, W.E., Hamilton, G.C. and Rodriguez-Saona, C. (2013) Companion Planting and Insect Pest Control. Weed and Pest Control-Conventional and New Challenges. IntechOpen, London, UK.
[6]  Lu, Y., Watkins, K.B., Teasdale, J.R., Aref, A. and Abdul-Baki, A. (2000) Cover Crops in Sustainable Food Production. Food Reviews International, 16, 121-157.
https://doi.org/10.1081/FRI-100100285
[7]  Jedrszczyk, E. and Poniedzialek, M. (2007) The Impact of the Living Mulch on Plant Growth and Selected Features of Sweet Corn Yield. Folia Horticulturae, 19, 3-13.
[8]  Borowy, A. (2012) Growth and Yield of Stake Tomato under No-Tillage Cultivation Using Hairy Vetch as a Living Mulch. Acta Scientiarum Polonorum Hortorum, 11, 229-252.
[9]  Kolota, E. and Adamczewska-Sowińska, K. (2013) Living Mulches in Vegetable Crops Production: Perspectives and Limitations (A Review). Acta Scientiarum Polonorum Hortorum, 12, 127-142.
[10]  Adamczewska-Sowińska, K. and Kolota, E. (2008) The Effect of Living Mulches on Yield and Quality of Tomato Fruits. Vegetable Crops Research Bulletin, 69, 31-38.
[11]  Mandal, S.M.A. and Dash, D. (2012) Effect of Intercropping on the Incidence of Insect Pests and Yield in Cabbage. Journal of Plant Protection and Environment, 9, 26-28.
[12]  Bradley, F.M. and Ellis, B.W. (1992) All-New Encyclopedia of Organic Gardening. Rodale Press, Emmaus, Pennsylvania.
[13]  de Carvalho, L.M., de Oliveira, I.R., Almeida, N.A. and Andrade, K.R. (2012) The Effects of Biotic Interaction between Tomato and Companion Plants on Yield. Acta Horticulturae, 933, 347-354.
https://doi.org/10.17660/ActaHortic.2012.933.45
[14]  De Vos, R., Moco, S., Lommen, A., Keurentjes, J.J.B., Bino, R.J. and Hall, R.D. (2007) Untargeted Large-Scale Plant Metabolomics Using Liquid Chromatography Coupled to Mass Spectrometry. Nature Protocols, 2, 778-791.
https://doi.org/10.1038/nprot.2007.95
[15]  Nimbalkar, M.S., Pai, S.R., Pawar, N.V., Oulkar, D. and Dixit, G.B. (2012) Free Amino Acid Profiling in Grain Amaranth Using LC-MS/MS. Food Chemistry, 134, 2565-2569.
https://doi.org/10.1016/j.foodchem.2012.04.057
[16]  Feike, T., Chen, Q., Graeff-Honninger, S., Pfenning, J. and Claupein, W. (2010) Farmer-Developed Vegetable Intercropping Systems in Southern Hebei, China. Renewable Agriculture and Food Systems, 25, 272-280.
https://doi.org/10.1017/S1742170510000293
[17]  Miyazawa, K., Murakami, T., Takeda, M. and Murayama, T. (2010) Intercropping Green Manure Crops—Effects on Rooting Patterns. Plant and Soil, 331, 231-239.
https://doi.org/10.1007/s11104-009-0248-y
[18]  Inal, A., Gunes, A., Zhang, F. and Cakmak, I. (2007) Peanut/Maize Intercropping Induced Changes in Rhizosphere and Nutrient Concentrations in Shoots. Plant Physiology and Biochemistry, 45, 350-356.
https://doi.org/10.1016/j.plaphy.2007.03.016
[19]  Li, L., Tilman, D., Lambers, H. and Zhang, F.S. (2014) Plant Diversity and Overyielding: Insights from Belowground Facilitation of Intercropping in Agriculture. New Phytologist, 203, 63-69.
https://doi.org/10.1111/nph.12778
[20]  Tong, Y., Gabriel-Neumann, E., Krumbein, A., Ngwene, B., George, E. and Schreiner, M. (2015) Interactive Effects of Arbuscular Mycorrhizal Fungi and Intercropping with Sesame (Sesamum indicum) on the Glucosinolate Profile in Broccoli (Brassica oleracea var. Italica). Environmental and Experimental Botany, 109, 288-295.
https://doi.org/10.1016/j.envexpbot.2014.06.008
[21]  Al-Amri, S.M. (2013) Improved Growth, Productivity and Quality of Tomato (Solanum lycopersicum L.) Plants through Application of Shikimic Acid. Saudi Journal of Biological Sciences, 20, 339-345.
https://doi.org/10.1016/j.sjbs.2013.03.002
[22]  Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T. and Candido, V. (2009) Processing Tomato Quality as Affected by Irrigation Scheduling. Scientia Horticulturae, 122, 562-571.
https://doi.org/10.1016/j.scienta.2009.06.026
[23]  Santos-Sánchez, N.F., Salas-Coronado, R., Hernández-Carlos, B. and Villanueva-Canongo, C. (2019) Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. In: Plant Physiological Aspects of Phenolic Compounds, IntechOpen, London, UK.
[24]  Zhao, Y. (2010) Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 61, 49-64.
https://doi.org/10.1146/annurev-arplant-042809-112308
[25]  Maeda, H. and Dudareva, N. (2012) The Shikimate Pathway and Aromatic Amino Acids Biosynthesis in Plants. Annual Review of Plant Biology, 63, 73-105.
https://doi.org/10.1146/annurev-arplant-042811-105439
[26]  Miller, A.J., Fan, X., Shen, Q. and Smith, S.J. (2007) Amino Acids and Nitrate as Signals for the Regulation of Nitrogen Acquisition. Journal of Experimental Botany, 59, 111-119.
https://doi.org/10.1093/jxb/erm208
[27]  Weiland, M., Mancuso, S. and Baluska, F. (2015) Signalling via Glutamate and GLRs in Arabidopsis thaliana. Functional Plant Biology, 43, 1-25.
https://doi.org/10.1071/FP15109
[28]  Hildebrandt, T.M., Nunes Nesi, A., Araújo, W.L. and Braun, H.P. (2015) Amino Acid Catabolism in Plants. Molecular Plant, 8, 1563-1579.
https://doi.org/10.1016/j.molp.2015.09.005
[29]  Forde, B.G. and Roberts, M.R. (2014) Glutamate Receptor-Like Channels in Plants: A Role as Amino Acid Sensors in Plant Defence? F1000Prime Reports, 6, 37.
[30]  Ramos-Ruiz, R., Martinez, F. and Knauf-Beiter, G. (2019) The Effects of GABA in Plants. Cogent Food and Agriculture, 5, Article ID: 1670553.
https://doi.org/10.1080/23311932.2019.1670553
[31]  Kishor, P.B.K. and Sreenivasulu, N. (2014) Is Proline Accumulation per se Correlated with Stress Tolerance or Is Proline Homoeostasis a More Critical Issue? Plant, Cell and Environment, 37, 300-311.
https://doi.org/10.1111/pce.12157
[32]  Ros, R., Munoz-Bertomeu, J. and Krueger, S. (2014) Serine in Plants: Biosynthesis, Metabolism, and Functions. Trends in Plant Science, 19, 564-569.
https://doi.org/10.1016/j.tplants.2014.06.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133