|
基于逻辑回归的不平衡数据算法适用性研究
|
Abstract:
[1] | 徐丽丽, 闫德勤, 高晴. 基于聚类欠采样的极端学习机[J]. 微型机与应用, 2015(17): 81-84. |
[2] | Paolo, S. (2010) A Multi-Objective Optimization Approach for Class Imbalance Learning. Computers in Biology and Medicine, 40, 509-518. https://doi.org/10.1016/j.compbiomed.2010.03.005 |
[3] | 王和勇, 樊泓坤, 姚正安, 李成安. 不平衡数据集的分类方法研究[J]. 计算机应用研究, 2008(5): 1301-1303+1308. |
[4] | 顾东晓, 李培培, 杨雪洁. 网络在线预约挂号系统用户的爽约行为研究[J]. 情报科学, 2017, 35(5): 99-106. |
[5] | Han, H., et al. (2005) Border-line-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. Application Research of Computers, 56, 66-68. |
[6] | Vasu, M. and Ravi, V. (2011) A Hybrid Under-Sampling Approach for Mining Unbalanced Datasets: Ap-plications to Banking and Insurance. International Journal of Data Mining, Modelling and Management, 3, 75-105.
https://doi.org/10.1504/IJDMMM.2011.038812 |
[7] | Li, H. and Sun, J. (2012) Forecasting Business Failure: The Use of Nearest-Neighbour Support Vectors and Correcting Imbalanced Samples Evidence from the Chinese Hotel Indus-try. Tourism Management, 33, 622-634.
https://doi.org/10.1016/j.tourman.2011.07.004 |
[8] | Sundarkumar, G.G. and Ravi, V. (2015) A Novel Hybrid Un-dersampling Method for Mining Unbalanced Datasets in Banking and Insurance. Engineering Applications of Artificial Intelligence, 37, 368-377.
https://doi.org/10.1016/j.engappai.2014.09.019 |
[9] | B?aszczyński, J. and Stefanowski, J. (2015) Neighbourhood Sampling in Bagging for Imbalanced Data. Neurocomputing, 150, 529-542. https://doi.org/10.1016/j.neucom.2014.07.064 |
[10] | Bi, J.J. and Zhang, C.S. (2018) An Empirical Comparison on State-of-the-Art Multi-Class Imbalance Learning Algorithms and a New Diversified Ensemble Learning Scheme. Knowledge-Based Systems, 158, 81-93. |
[11] | Namvar, A., Siami, M., Rabhi, F. and Naderpour, M. (2018) Credit Risk Prediction in an Imbalanced Social Lending Environment. International Journal of Computational Intelligence Systems, 11, 925-935.
https://doi.org/10.2991/ijcis.11.1.70 |
[12] | 高阳, 刘其成, 牟春晓. 基于蚁群聚类的不平衡数据过采样方法[J/OL]. 烟台大学学报(自然科学与工程版), 1-8 [2020-11-19]. |
[13] | 蒋华, 江日辰, 王鑫, 王慧娇. ADASYN和SMOTE相结合的不平衡数据分类算法[J]. 计算机仿真, 2020, 37(3): 254-258+420. |
[14] | Guo, H.X., Li, Y.J., Shang, J., Gu, M.Y., Huang, Y.Y. and Gong, B. (2016) Learning from Class-Imbalanced Data: Review of Methods and Applications. Expert Systems with Applications, 73, 220-239.
https://doi.org/10.1016/j.eswa.2016.12.035 |
[15] | 宋捷. 不平衡数据处理方法综述[J]. 统计与决策, 2014(3): 100-102. |
[16] | He, H. and Garcia, E.A. (2009) Learning from Imbalanced Data. IEEE Transactions on Knowledge & Data Engineering, 21, 63-84. https://doi.org/10.1109/TKDE.2008.239 |
[17] | 刘金平, 周嘉铭, 贺俊宾, 唐朝晖, 徐鹏飞, 张国勇. 面向不均衡数据的融合谱聚类的自适应过采样法[J/OL]. 智能系统学报, 1-8. http://kns.cnki.net/kcms/detail/23.1538.TP.20200827.1317.008.html, 2020-10-30. |
[18] | Berkson, J. (2012) Application of the Logistic Function to Bio-Assay. Journal of the American Statistical Association, 39, 357-365. https://doi.org/10.2307/2280041 |