|
近视病因与发病机制的研究进展
|
Abstract:
[1] | Flitcroft, D.I. (2012) The Complex Interactions of Retinal, Optical and Environmental Factors in Myopia Aetiology. Progress in Retinal and Eye Research, 31, 622-660. https://doi.org/10.1016/j.preteyeres.2012.06.004 |
[2] | Holden, B.A. (2015) The Charles F. Prentice Award Lecture 2014: A 50-Year Research Journey: Giants and Great Collaborators. Optometry and Vision Science, 92, 741-749. https://doi.org/10.1097/OPX.0000000000000624 |
[3] | Tkatchenko, A.V., Tkatchenko, T.V., Guggenheim, J.A., et al. (2015) APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLOS Genetics, 11, e1005432. https://doi.org/10.1371/journal.pgen.1005432 |
[4] | McBrien, N.A., Lawlor, P. and Gentle, A. (2000) Scleral Remodeling during the Development of and Recovery from Axial Myopia in the Tree Shrew. Investigative Ophthalmology & Visual Science, 41, 3713-3719. |
[5] | Wu, H., Chen, W., Zhao, F., et al. (2018) Scleral Hypoxia Is a Target for Myopia Control. Proceedings of the National Academy of Sciences of the United States of America, 115, E7091-E7100. https://doi.org/10.1073/pnas.1721443115 |
[6] | McFadden, S.A., Howlett, M.H. and Mertz, J.R. (2004) Retinoic Acid Signals the Direction of Ocular Elongation in the Guinea Pig Eye. Vision Research, 44, 643-653. https://doi.org/10.1016/j.visres.2003.11.002 |
[7] | McBrien, N.A., Jobling, A.I., Truong, H.T., et al. (2009) Expression of Muscarinic Receptor Subtypes in Tree Shrew Ocular Tissues and Their Regulation during the Development of Myopia. Molecular Vision, 15, 464-475. |
[8] | Groblewska, M., Siewko, M., Mroczko, B., et al. (2012) The Role of Matrix Metalloproteinases (MMPs) and Their Inhibitors (TIMPs) in the Development of Esophageal Cancer. Folia Histochemica et Cytobiologica, 50, 12-19.
https://doi.org/10.5603/FHC.2012.0002 |
[9] | Yang, S.R., Ye, J.J. and Long, Q. (2010) Expressions of Collagen, Matrix Metalloproteases-2, and Tissue Inhibitor of Matrix Metalloproteinase-2 in the Posterior Sclera of Newborn Guinea Pigs with Negative Lens-Defocused Myopia. Acta Academiae Medicinae Sinicae, 32, 55-59. |
[10] | Jia, Y., Hu, D.N., Zhu, D., et al. (2014) MMP-2, MMP-3, TIMP-1, TIMP-2, and TIMP-3 Protein Levels in Human Aqueous Humor: Relationship with Axial Length. Investigative Ophthalmology & Visual Science, 55, 3922-3928.
https://doi.org/10.1167/iovs.14-13983 |
[11] | Zhuang, H., Zhang, R., Shu, Q., et al. (2014) Changes of TGF-beta2, MMP-2, and TIMP-2 Levels in the Vitreous of Patients with High Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1763-1767.
https://doi.org/10.1007/s00417-014-2768-2 |
[12] | Jobling, A.I., Nguyen, M., Gentle, A., et al. (2004) Isoform-Specific Changes in Scleral Transforming Growth Factor-Beta Expression and the Regulation of Collagen Synthesis during Myopia Progression. Journal of Biological Chemistry, 279, 18121-18126. https://doi.org/10.1074/jbc.M400381200 |
[13] | Shea, C.M., Edgar, C.M., Einhorn, T.A., et al. (2003) BMP Treatment of C3H10T1/2 Mesenchymal Stem Cells Induces Both Chondrogenesis and Osteogenesis. Journal of Cellular Biochemistry, 90, 1112-1127.
https://doi.org/10.1002/jcb.10734 |
[14] | Wordinger, R.J. and Clark, A.F. (2007) Bone Morphogenetic Proteins and Their Receptors in the Eye. Experimental Biology and Medicine (Maywood), 232, 979-992. https://doi.org/10.3181/0510-MR-345 |
[15] | Gao, Z.Y., Huo, L.J., Cui, D.M., et al. (2012) Distribution of Bone Morphogenetic Protein Receptors in Human Scleral Fibroblasts Cultured in Vitro and Human Sclera. International Journal of Ophthalmology, 5, 661-666. |
[16] | Li, H., Cui, D., Zhao, F., et al. (2015) BMP-2 Is Involved in Scleral Remodeling in Myopia Development. PLoS ONE, 10, e125219. https://doi.org/10.1371/journal.pone.0125219 |
[17] | Wang, Y., Tang, Z., Xue, R., et al. (2011) TGF-beta1 Promoted MMP-2 Mediated Wound Healing of Anterior Cruciate Ligament Fibroblasts through NF-kappaB. Connective Tissue Research, 52, 218-225.
https://doi.org/10.3109/03008207.2010.516849 |
[18] | Wei, C.C., Kung, Y.J., Chen, C.S., et al. (2018) Allergic Conjunctivitis-Induced Retinal Inflammation Promotes Myopia Progression. EBioMedicine, 28, 274-286. https://doi.org/10.1016/j.ebiom.2018.01.024 |
[19] | Li, J. and Zhang, Q. (2017) Insight into the Molecular Genetics of Myopia. Molecular Vision, 23, 1048-1080. |
[20] | Lin, H.J., Wei, C.C., Chang, C.Y., et al. (2016) Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 10, 269-281. https://doi.org/10.1016/j.ebiom.2016.07.021 |
[21] | Long, Q., Ye, J., Li, Y., et al. (2013) C-Reactive Protein and Complement Components in Patients with Pathological Myopia. Optometry and Vision Science, 90, 501-506. https://doi.org/10.1097/OPX.0b013e31828daa6e |
[22] | Gao, T.T., Long, Q. and Yang, X. (2015) Complement Factors C1q, C3 and C5b-9 in the Posterior Sclera of Guinea Pigs with Negative Lens-Defocused Myopia. International Journal of Ophthalmology, 8, 675-680. |
[23] | Wakamatsu, T.H., Dogru, M., Matsumoto, Y., et al. (2013) Evaluation of Lipid Oxidative Stress Status in Sjogren Syndrome Patients. Investigative Ophthalmology & Visual Science, 54, 201-210. https://doi.org/10.1167/iovs.12-10325 |
[24] | Chen, Y., Mehta, G. and Vasiliou, V. (2009) Antioxidant Defenses in the Ocular Surface. Ocular Surface, 7, 176-185.
https://doi.org/10.1016/S1542-0124(12)70185-4 |
[25] | Arnal, E., Peris-Martinez, C., Menezo, J.L., et al. (2011) Oxidative Stress in Keratoconus?. Investigative Ophthalmology & Visual Science, 52, 8592-8597. https://doi.org/10.1167/iovs.11-7732 |
[26] | Izuta, H., Matsunaga, N., Shimazawa, M., et al. (2010) Proliferative Diabetic Retinopathy and Relations among Antioxidant Activity, Oxidative Stress, and VEGF in the Vitreous Body. Molecular Vision, 16, 130-136. |
[27] | Francisco, B.M., Salvador, M. and Amparo, N. (2015) Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 750637. https://doi.org/10.1155/2015/750637 |
[28] | Ito, K. and Suda, T. (2014) Metabolic Requirements for the Maintenance of Self-Renewing Stem Cells. Nature Reviews Molecular Cell Biology, 15, 243-256. https://doi.org/10.1038/nrm3772 |
[29] | Rahman, M.A., Rahman, B. and Ahmed, N. (2013) High Blood Manganese in Iron-Deficient Children in Karachi. Public Health Nutrition, 16, 1677-1683. https://doi.org/10.1017/S1368980013000839 |
[30] | Mozaffarieh, M., Grieshaber, M.C. and Flammer, J. (2008) Oxygen and Blood Flow: Players in the Pathogenesis of Glaucoma. Molecular Vision, 14, 224-233. |
[31] | Kim, E.B., Kim, H.K., Hyon, J.Y., et al. (2016) Oxidative Stress Levels in Aqueous Humor from High Myopic Patients. Korean Journal of Ophthalmology, 30, 172-179. https://doi.org/10.3341/kjo.2016.30.3.172 |
[32] | Powell, S.R. (2000) The Antioxidant Properties of Zinc. Journal of Nutrition, 130, 1447S-1454S.
https://doi.org/10.1093/jn/130.5.1447S |
[33] | Fedor, M., Socha, K., Urban, B., et al. (2017) Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia. Biological Trace Element Research, 176, 1-9.
https://doi.org/10.1007/s12011-016-0805-1 |
[34] | Feldkaemper, M. and Schaeffel, F. (2013) An Updated View on the Role of Dopamine in Myopia. Experimental Eye Research, 114, 106-119. https://doi.org/10.1016/j.exer.2013.02.007 |
[35] | Cohen, Y., Peleg, E., Belkin, M., et al. (2012) Ambient Illuminance, Retinal Dopamine Release and Refractive Development in Chicks. Experimental Eye Research, 103, 33-40. https://doi.org/10.1016/j.exer.2012.08.004 |
[36] | Karouta, C. and Ashby, R.S. (2014) Correlation between Light Levels and the Development of Deprivation Myopia. Investigative Ophthalmology & Visual Science, 56, 299-309. https://doi.org/10.1167/iovs.14-15499 |
[37] | Ke, Y., Li, W., Tan, Z., et al. (2017) Induction of Dopamine D1 and D5 Receptors in R28 Cells by Light Exposures. Biochemical and Biophysical Research Communications, 486, 686-692. https://doi.org/10.1016/j.bbrc.2017.03.099 |
[38] | Jackson, C.R., Chaurasia, S.S., Zhou, H., et al. (2009) Essential Roles of Dopamine D4 Receptors and the Type 1 Adenylyl Cyclase in Photic Control of Cyclic AMP in Photoreceptor Cells. Journal of Neurochemistry, 109, 148-157.
https://doi.org/10.1111/j.1471-4159.2009.05920.x |
[39] | Zhou, X., Pardue, M.T., Iuvone, P.M., et al. (2017) Dopamine Signaling and Myopia Development: What Are the Key Challenges. Progress in Retinal and Eye Research, 61, 60-71. https://doi.org/10.1016/j.preteyeres.2017.06.003 |
[40] | Wang, S., Liu, S., Mao, J., et al. (2014) Effect of Retinoic Acid on the Tight Junctions of the Retinal Pigment Epithelium-Choroid Complex of Guinea Pigs with Lens-Induced Myopia in Vivo. International Journal of Molecular Medicine, 33, 825-832. https://doi.org/10.3892/ijmm.2014.1651 |
[41] | Ma, M., Zhang, Z., Du, E., et al. (2014) Wnt Signaling in Form Deprivation Myopia of the Mice Retina. PLoS ONE, 9, e91086. https://doi.org/10.1371/journal.pone.0091086 |