全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

近视病因与发病机制的研究进展
Research Progress on Etiology and Pathogenesis of Myopia

DOI: 10.12677/ACM.2020.1011388, PP. 2561-2566

Keywords: 近视病因,巩膜重塑,炎症反应,氧化应激,多巴胺
Etiology of Myopia
, Sleral Remodeling, Inflammatory Response, Oxidative Stress, Dopamine

Full-Text   Cite this paper   Add to My Lib

Abstract:

近视已成为全球性的问题,尤其在东亚和东南亚的城市地区普遍,近视不仅增加患者的经济,更重要的是其相关的眼部并发症如白内障、青光眼及黄斑病变等可能导致患者视力严重下降甚至失明。近些年来关于对近视发病机制的研究已逐渐聚焦于分子生物学水平,人们开始从更深层次探索近视发病的原因,为研究近视防控提供潜在治疗靶点。
Myopia has become a global problem, especially in urban areas of East Asia and Southeast Asia. Myopia not only increases the patient’s economy, but also, more importantly, its related ocular complications such as cataract, glaucoma and macular degeneration may lead to severe vision loss or even blindness. In recent years, the research on the pathogenesis of myopia has gradually focused on the level of molecular biology. People have begun to explore the causes of myopia from a deeper level to provide potential therapeutic targets for the prevention and control of myopia.

References

[1]  Flitcroft, D.I. (2012) The Complex Interactions of Retinal, Optical and Environmental Factors in Myopia Aetiology. Progress in Retinal and Eye Research, 31, 622-660.
https://doi.org/10.1016/j.preteyeres.2012.06.004
[2]  Holden, B.A. (2015) The Charles F. Prentice Award Lecture 2014: A 50-Year Research Journey: Giants and Great Collaborators. Optometry and Vision Science, 92, 741-749.
https://doi.org/10.1097/OPX.0000000000000624
[3]  Tkatchenko, A.V., Tkatchenko, T.V., Guggenheim, J.A., et al. (2015) APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans. PLOS Genetics, 11, e1005432.
https://doi.org/10.1371/journal.pgen.1005432
[4]  McBrien, N.A., Lawlor, P. and Gentle, A. (2000) Scleral Remodeling during the Development of and Recovery from Axial Myopia in the Tree Shrew. Investigative Ophthalmology & Visual Science, 41, 3713-3719.
[5]  Wu, H., Chen, W., Zhao, F., et al. (2018) Scleral Hypoxia Is a Target for Myopia Control. Proceedings of the National Academy of Sciences of the United States of America, 115, E7091-E7100.
https://doi.org/10.1073/pnas.1721443115
[6]  McFadden, S.A., Howlett, M.H. and Mertz, J.R. (2004) Retinoic Acid Signals the Direction of Ocular Elongation in the Guinea Pig Eye. Vision Research, 44, 643-653.
https://doi.org/10.1016/j.visres.2003.11.002
[7]  McBrien, N.A., Jobling, A.I., Truong, H.T., et al. (2009) Expression of Muscarinic Receptor Subtypes in Tree Shrew Ocular Tissues and Their Regulation during the Development of Myopia. Molecular Vision, 15, 464-475.
[8]  Groblewska, M., Siewko, M., Mroczko, B., et al. (2012) The Role of Matrix Metalloproteinases (MMPs) and Their Inhibitors (TIMPs) in the Development of Esophageal Cancer. Folia Histochemica et Cytobiologica, 50, 12-19.
https://doi.org/10.5603/FHC.2012.0002
[9]  Yang, S.R., Ye, J.J. and Long, Q. (2010) Expressions of Collagen, Matrix Metalloproteases-2, and Tissue Inhibitor of Matrix Metalloproteinase-2 in the Posterior Sclera of Newborn Guinea Pigs with Negative Lens-Defocused Myopia. Acta Academiae Medicinae Sinicae, 32, 55-59.
[10]  Jia, Y., Hu, D.N., Zhu, D., et al. (2014) MMP-2, MMP-3, TIMP-1, TIMP-2, and TIMP-3 Protein Levels in Human Aqueous Humor: Relationship with Axial Length. Investigative Ophthalmology & Visual Science, 55, 3922-3928.
https://doi.org/10.1167/iovs.14-13983
[11]  Zhuang, H., Zhang, R., Shu, Q., et al. (2014) Changes of TGF-beta2, MMP-2, and TIMP-2 Levels in the Vitreous of Patients with High Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1763-1767.
https://doi.org/10.1007/s00417-014-2768-2
[12]  Jobling, A.I., Nguyen, M., Gentle, A., et al. (2004) Isoform-Specific Changes in Scleral Transforming Growth Factor-Beta Expression and the Regulation of Collagen Synthesis during Myopia Progression. Journal of Biological Chemistry, 279, 18121-18126.
https://doi.org/10.1074/jbc.M400381200
[13]  Shea, C.M., Edgar, C.M., Einhorn, T.A., et al. (2003) BMP Treatment of C3H10T1/2 Mesenchymal Stem Cells Induces Both Chondrogenesis and Osteogenesis. Journal of Cellular Biochemistry, 90, 1112-1127.
https://doi.org/10.1002/jcb.10734
[14]  Wordinger, R.J. and Clark, A.F. (2007) Bone Morphogenetic Proteins and Their Receptors in the Eye. Experimental Biology and Medicine (Maywood), 232, 979-992.
https://doi.org/10.3181/0510-MR-345
[15]  Gao, Z.Y., Huo, L.J., Cui, D.M., et al. (2012) Distribution of Bone Morphogenetic Protein Receptors in Human Scleral Fibroblasts Cultured in Vitro and Human Sclera. International Journal of Ophthalmology, 5, 661-666.
[16]  Li, H., Cui, D., Zhao, F., et al. (2015) BMP-2 Is Involved in Scleral Remodeling in Myopia Development. PLoS ONE, 10, e125219.
https://doi.org/10.1371/journal.pone.0125219
[17]  Wang, Y., Tang, Z., Xue, R., et al. (2011) TGF-beta1 Promoted MMP-2 Mediated Wound Healing of Anterior Cruciate Ligament Fibroblasts through NF-kappaB. Connective Tissue Research, 52, 218-225.
https://doi.org/10.3109/03008207.2010.516849
[18]  Wei, C.C., Kung, Y.J., Chen, C.S., et al. (2018) Allergic Conjunctivitis-Induced Retinal Inflammation Promotes Myopia Progression. EBioMedicine, 28, 274-286.
https://doi.org/10.1016/j.ebiom.2018.01.024
[19]  Li, J. and Zhang, Q. (2017) Insight into the Molecular Genetics of Myopia. Molecular Vision, 23, 1048-1080.
[20]  Lin, H.J., Wei, C.C., Chang, C.Y., et al. (2016) Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine, 10, 269-281.
https://doi.org/10.1016/j.ebiom.2016.07.021
[21]  Long, Q., Ye, J., Li, Y., et al. (2013) C-Reactive Protein and Complement Components in Patients with Pathological Myopia. Optometry and Vision Science, 90, 501-506.
https://doi.org/10.1097/OPX.0b013e31828daa6e
[22]  Gao, T.T., Long, Q. and Yang, X. (2015) Complement Factors C1q, C3 and C5b-9 in the Posterior Sclera of Guinea Pigs with Negative Lens-Defocused Myopia. International Journal of Ophthalmology, 8, 675-680.
[23]  Wakamatsu, T.H., Dogru, M., Matsumoto, Y., et al. (2013) Evaluation of Lipid Oxidative Stress Status in Sjogren Syndrome Patients. Investigative Ophthalmology & Visual Science, 54, 201-210.
https://doi.org/10.1167/iovs.12-10325
[24]  Chen, Y., Mehta, G. and Vasiliou, V. (2009) Antioxidant Defenses in the Ocular Surface. Ocular Surface, 7, 176-185.
https://doi.org/10.1016/S1542-0124(12)70185-4
[25]  Arnal, E., Peris-Martinez, C., Menezo, J.L., et al. (2011) Oxidative Stress in Keratoconus?. Investigative Ophthalmology & Visual Science, 52, 8592-8597.
https://doi.org/10.1167/iovs.11-7732
[26]  Izuta, H., Matsunaga, N., Shimazawa, M., et al. (2010) Proliferative Diabetic Retinopathy and Relations among Antioxidant Activity, Oxidative Stress, and VEGF in the Vitreous Body. Molecular Vision, 16, 130-136.
[27]  Francisco, B.M., Salvador, M. and Amparo, N. (2015) Oxidative Stress in Myopia. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 750637.
https://doi.org/10.1155/2015/750637
[28]  Ito, K. and Suda, T. (2014) Metabolic Requirements for the Maintenance of Self-Renewing Stem Cells. Nature Reviews Molecular Cell Biology, 15, 243-256.
https://doi.org/10.1038/nrm3772
[29]  Rahman, M.A., Rahman, B. and Ahmed, N. (2013) High Blood Manganese in Iron-Deficient Children in Karachi. Public Health Nutrition, 16, 1677-1683.
https://doi.org/10.1017/S1368980013000839
[30]  Mozaffarieh, M., Grieshaber, M.C. and Flammer, J. (2008) Oxygen and Blood Flow: Players in the Pathogenesis of Glaucoma. Molecular Vision, 14, 224-233.
[31]  Kim, E.B., Kim, H.K., Hyon, J.Y., et al. (2016) Oxidative Stress Levels in Aqueous Humor from High Myopic Patients. Korean Journal of Ophthalmology, 30, 172-179.
https://doi.org/10.3341/kjo.2016.30.3.172
[32]  Powell, S.R. (2000) The Antioxidant Properties of Zinc. Journal of Nutrition, 130, 1447S-1454S.
https://doi.org/10.1093/jn/130.5.1447S
[33]  Fedor, M., Socha, K., Urban, B., et al. (2017) Serum Concentration of Zinc, Copper, Selenium, Manganese, and Cu/Zn Ratio in Children and Adolescents with Myopia. Biological Trace Element Research, 176, 1-9.
https://doi.org/10.1007/s12011-016-0805-1
[34]  Feldkaemper, M. and Schaeffel, F. (2013) An Updated View on the Role of Dopamine in Myopia. Experimental Eye Research, 114, 106-119.
https://doi.org/10.1016/j.exer.2013.02.007
[35]  Cohen, Y., Peleg, E., Belkin, M., et al. (2012) Ambient Illuminance, Retinal Dopamine Release and Refractive Development in Chicks. Experimental Eye Research, 103, 33-40.
https://doi.org/10.1016/j.exer.2012.08.004
[36]  Karouta, C. and Ashby, R.S. (2014) Correlation between Light Levels and the Development of Deprivation Myopia. Investigative Ophthalmology & Visual Science, 56, 299-309.
https://doi.org/10.1167/iovs.14-15499
[37]  Ke, Y., Li, W., Tan, Z., et al. (2017) Induction of Dopamine D1 and D5 Receptors in R28 Cells by Light Exposures. Biochemical and Biophysical Research Communications, 486, 686-692.
https://doi.org/10.1016/j.bbrc.2017.03.099
[38]  Jackson, C.R., Chaurasia, S.S., Zhou, H., et al. (2009) Essential Roles of Dopamine D4 Receptors and the Type 1 Adenylyl Cyclase in Photic Control of Cyclic AMP in Photoreceptor Cells. Journal of Neurochemistry, 109, 148-157.
https://doi.org/10.1111/j.1471-4159.2009.05920.x
[39]  Zhou, X., Pardue, M.T., Iuvone, P.M., et al. (2017) Dopamine Signaling and Myopia Development: What Are the Key Challenges. Progress in Retinal and Eye Research, 61, 60-71.
https://doi.org/10.1016/j.preteyeres.2017.06.003
[40]  Wang, S., Liu, S., Mao, J., et al. (2014) Effect of Retinoic Acid on the Tight Junctions of the Retinal Pigment Epithelium-Choroid Complex of Guinea Pigs with Lens-Induced Myopia in Vivo. International Journal of Molecular Medicine, 33, 825-832.
https://doi.org/10.3892/ijmm.2014.1651
[41]  Ma, M., Zhang, Z., Du, E., et al. (2014) Wnt Signaling in Form Deprivation Myopia of the Mice Retina. PLoS ONE, 9, e91086.
https://doi.org/10.1371/journal.pone.0091086

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133