全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lamb波在抛物线型声黑洞薄板结构中的传播特性
Study the Propagation Characteristics of Lamb Waves on Parabolic Acoustic Black Hole Thin Plate Structures

DOI: 10.12677/APP.2020.1011059, PP. 451-458

Keywords: 声黑洞,振幅,聚焦,兰姆波
Acoustic Black Hole
, Amplitude, Focus, Lamb Waves

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用激光激发的超声Lamb波,对抛物线型声黑洞结构薄板上Lamb波的传播特性及轨迹进行了研究。基于在金属材料中激发超声的热弹机制,建立了激光在抛物线型声黑洞结构薄板上激发Lamb波的三维有限元模型。声波以激发区域为中心向外扩散传播,且大部分的声波能量形成平行于激光线源的波振面,并沿垂直于激光线源方向向外传播。当声波开始进入声黑洞的结构中时,向着厚度减小的方向传播,同时波束宽度会变小,振幅逐渐变大。最后,研究声黑洞底部中心点的位移变化,结果表明峰值位移随着时间稳步上升,具有比较明显的声波聚焦现象。本论文研究成果可用于声黑洞薄板结构的检测与评估。
In this paper, the propagation characteristics of Lamb waves on thin plate structure with parabolic acoustic black hole are studied by using laser ultrasonic technology. Based on the thermoelastic mechanism, a three-dimensional finite element model of laser excitation of Lamb wave in thin plate structure with parabolic acoustic black hole is established. Then, the acoustic wave propagates outward as the excitation region is the centre; the wave is parallel to the laser line source; and its propagation direction is perpendicular to the laser line source. When the sound wave encounters the acoustic black hole, it will propagate along the thickness decreasing direction. Meanwhile, the acoustic beam width decreases, and the amplitude gradually increases. Finally, the acoustic amplitude at the lowest point of the acoustic black hole increases gradually, which present the sound wave focusing phenomenon. The results of this paper can be used to detect and evaluate the thin plate structure with acoustic black hole.

References

[1]  Lamb, H. (1917) On Waves in an Elastic Plate. Proceedings of the Royal Society of London, Containing Paper of a Mathematical and Physical Character, 93, 114-128.
https://doi.org/10.1098/rspa.1917.0008
[2]  Rose J L, 何存富, 吴斌, 王秀彦. 固体中的超声波[M]. 北京: 科学出版社, 2004.
[3]  Johnson, M.A., Berthelot, Y.H., Brodeur, P. and Gerhardstein, J. (1995) Investigation of Lamb Waves in Copy Paper Using Laser Ultrasonics. The Journal of the Acoustical Society of America, 98, 2916.
https://doi.org/10.1121/1.414211
[4]  Wu, T.-Y. and Ume, I.C. (2011) Fundamental Study of Laser Generation of Narrowband Lamb Waves Using Superimposed Line Sources Technique. NDT & E International, 44, 315-323.
https://doi.org/10.1016/j.ndteint.2011.01.006
[5]  孙宏祥, 许伯强. 激光激发Lamb波的有限元时域和频域数值分析[J]. 中国激光, 2010, 37(2): 537-542.
[6]  许伯强, 陈丽娟, 徐桂东, 徐晨光, 骆英. 各向异性板中激光激发Lamb波的数值模拟[J]. 中国激光, 2012, 39(3): 94-99.
[7]  赵振宁, 吴迪, 张博南, 吴军芳, 滕永平. 薄板中超声导波传播模态信号分析方法[J]. 无损检测, 2017, 39(1):1 0-15.
[8]  Krylov, V.V. (2002) Acoustic ‘black holes’ for Flexural Waves and Their Potential Applications. Institute of Acoustics Spring Conference, Salford, 5-27 March 2002, 25-27.
[9]  Yan, S.L., Lomonosov, A.M. and Shen, Z.H. (2016) Numerical and Experimental Study of Lamb Wave Propagation in a Two-Dimensional Acoustic Black Hole. Journal of Applied Physics, 119, Article ID: 214902.
https://doi.org/10.1063/1.4953221
[10]  罗静. 基于激光超声技术的一维声学黑洞结构研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2017.
[11]  黄薇, 季宏丽, 裘进浩, 成利. 二维声学黑洞对弯曲波的能量聚集效应[J]. 振动与冲击, 2017, 36(9): 51-57.
[12]  Jia, J., Shen, Z., Han, Q. and Jing, X.P. (2017) Design of Wedge Structure with Non-Dispersive Wedge Wave Propagation. Applied Optics, 56, 8564-8569.
https://doi.org/10.1364/AO.56.008564

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133