|
一类微驱动器的复合控制及稳定性分析
|
Abstract:
考虑一类基于微驱动器的微分方程摩擦模型,对微驱动器的动态方程进行重构,得到等价状态空间模型。根据该模型,提出了一种新的包括前馈控制、PID控制和径向基神经网络控制的复合控制方法。通过构造合适的李雅普诺夫函数,证明了系统在平衡点是渐近稳定的,且跟踪误差渐近收敛到零。
The difference equation model of micro actuator is considered in this paper. An equivalent state space model is derived from the dynamic equation of micro actuator. According to the model, a new compound control method, including feed-forward control, PID control and radial basis network control, is proposed. The stability of the new control method is proved through constructing ac-ceptable Lyapunov function.
[1] | Jung, J. and Huh, K. (2010) Simulation Tool Design for the Two-Axis Nano Stage of Lithography Systems. Mechatronics, 20, 574-581. https://doi.org/10.1016/j.mechatronics.2010.06.003 |
[2] | Liu, C.H., Jywe, W.Y., Jeng, Y.R., et al. (2010) Design and Control of a long-Traveling Nano-Positioning Stage. Precision Engineering, 34, 497-506. https://doi.org/10.1016/j.precisioneng.2010.01.003 |
[3] | Yeh, H.C., Ni, W.T. and Pan, S.S. (2005) Digital Closed-Loop Nanopositioning Using Rectilinear Flexure Stage and Laser Interferometry. Control Engineering Practice, 13, 559-566. https://doi.org/10.1016/j.conengprac.2004.04.019 |
[4] | Yang, E.H., Hishinuma, Y. and Toda, R. (2007) Piezoelectric Microactuator Technologies for Wavefront Correction in Space. Proceedings of the SPIE, 6556, 65560A. https://doi.org/10.1117/12.721123 |
[5] | Sherrit, S., Bao, X., Jones, C .M., et al. (2011) Piezoelectric Multilayer Actuator Life Test. IEEE Transactions on Ultrasonics, Ferroelectics and Frequecy Control, 58, 820-828. https://doi.org/10.1109/TUFFC.2011.1874 |
[6] | Vasiljev, P., Mazeika, D. and Kulvietis, G. (2007) Modelling and Analysis of Omni-Directional Piezoelectric Actuator. Journal of Sound and Vibration, 308, 867-878. https://doi.org/10.1016/j.jsv.2007.03.074 |
[7] | 张栋, 张承进, 魏强. 压电微动工作台的动态迟滞模型[J]. 光学精密工程, 2009, 17(3): 549-556. |
[8] | Adriaens, H., De Koning, W.L. and Banning, R. (2000) Modeling Piezoelectric Actuators. IEEE/ASME Transactions on Mechatronics, 5, 331-341. https://doi.org/10.1109/3516.891044 |
[9] | 范伟, 傅雨晨, 于欣妍. 压电陶瓷驱动器的迟滞非线性规律[J]. 光学精密工程, 2019, 27(8): 1793-1799. |
[10] | Lee, S.H. and Royston, F.G. (2000) Modeling and Compensation of Hysteresis in Piezoceramic Transducers for Vibration Control. Journal of Intelligences Material Systems and Structures, 11, 781-790.
https://doi.org/10.1106/GQLJ-JGEU-MHG1-7JDF |
[11] | 刘长利, 胡守柱, 郭海林, 等. 叠堆式压电陶瓷驱动器的复合控制[J]. 光学精密工程, 2016, 24(9): 2248-2254. |
[12] | 刘星桥, 丁网芳, 李慧. 复合自抗扰在三电机同步控制系统的应用[J]. 电机与控制学报, 2018, 22(2): 108-116. |
[13] | 周淼磊, 张敬爱, 赵宇, 等. 压电微定位平台神经网络与专家模糊复合控制方法[J]. 控制与决策, 2018? 33(1): 95-100. |
[14] | Jiles, D.C. and Atherton, D.L. (1983) Ferromagnetic Hysteresis. IEEE Transactions Magnetics, 19, 2183-2185.
https://doi.org/10.1109/TMAG.1983.1062594 |
[15] | Hodgdon, M.L. (1988) Applications of a Theory of Ferromagnetic Hysteresis. IEEE Transactions Magnetics, 24, 218-222. https://doi.org/10.1109/20.43893 |
[16] | Ge, P. and Jouaneh, M. (1995) Modeling Hysteresis in Piezoceramic Actuators. Precision Engineering, 17, 211-221.
https://doi.org/10.1016/0141-6359(95)00002-U |
[17] | Canudas, W.C., Olsson, H., Astrom, K.J., et al. (1995) A New Model for Control of Systems with Friction. IEEE Transactions on Automatic Control, 40, 419-425. https://doi.org/10.1109/9.376053 |
[18] | Fung, R.F., Han, C.F. and Chang, J.R. (2008) Dynamic Modeling of a High-Precision Self-Moving Stage with Various Frictional Models. Applied Mathematical Modelling, 32, 1769-1780. https://doi.org/10.1016/j.apm.2007.06.012 |
[19] | Liu, Y.T., Fung, R.F. and Huang, T.K. (2004) Dynamic Responses of a Precision Positioning Table Impacted by a Soft-Mounted Piezoelectric Actuator. Precision Engineering, 28, 252-260.
https://doi.org/10.1016/j.precisioneng.2003.10.005 |
[20] | 马连伟, 谭永红, 邹涛. 采用拓展空间法建立迟滞模型[J]. 系统仿真学报, 2008(20): 5635-5637. |