全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动静脉血栓检测的检验及影像学研究进展
Research Progress of Laboratory and Imaging Detection of Thrombosis

DOI: 10.12677/ACM.2020.1011372, PP. 2463-2470

Keywords: 血栓形成,血清学检测,影像学检测,动静脉血栓的鉴别
Thrombosis
, Serological Detection, Imaging Examination, Identification of Artherothrombosis with Venous Thrombosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

血栓栓塞性疾病是当前发病率及病死率较高的心血管系统疾病之一。准确检测血栓的存在是临床工作中的重点问题。传统的血清学、影像学方法结合当前最新的分子技术已经被广泛运用到临床和科研的血栓检测工作中。本文将以血栓形成途径的为基础,对现有的血清学、影像学等检测手段的优缺点以及区别动静脉血栓的方法进行描述,讨论检测动静脉血栓的新方法和分子影像学探针的最新研究进展。
Thromboembolic disease is one of the most common cardiovascular diseases with high incidence and mortality. And it is a focus of clinical practice to accurately detect the existence of thrombus. The novel molecular technique combined with traditional serological and imaging methods has been widely used in clinical and scientific thrombus detection. On the basis of thrombosis pathway, we describe the advantages of serological and imaging methods, and the methods of distinguishing arteriovenous thrombosis so as to discuss the new methods for the detection of atherothrombosis and venous thrombosis as well as the latest progress of detection methods in molecular probes.

References

[1]  Lippi, G. and Favaloro, E.J. (2018) Venous and Arterial Thromboses: Two Sides of the Same Coin? Seminars in Thrombosis and Hemostasis, 44, 239-248.
https://doi.org/10.1055/s-0037-1607202
[2]  Kearon, C., Akl, E.A., Ornelas, J., et al. (2016) Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest, 149, 315-352.
https://doi.org/10.1016/j.chest.2015.11.026
[3]  Fiodorenko-dumas, ?., Dumas, I., Mastej, K., et al. (2019) Receptor GP IIb/IIIa as an Indicator of Risk in Vascular Events. Clinical and Applied Thrombosis/Hemostasis, 25.
https://doi.org/10.1177/1076029619845056
[4]  杨延宗, 马长生, 高连君, 等. 心房颤动[M]. 北京: 人民卫生出版社, 2017: 384-386.
[5]  Walton, B.L., Byrnes, J.R. and Wolberg, A.S. (2015) Fibrinogen, Red Blood Cells, and Factor XIII in Venous Thrombosis. Journal of Thrombosis and Haemostasis, 13, S208-S215.
https://doi.org/10.1111/jth.12918
[6]  Van, E.N., et al. (2016) Wells Rule and D-Dimer Testing to Rule out Pulmonary Embolism: A Systematic Review and Individual-Patient Data Meta-Analysis. Annals of Internal Medicine, 165, 253-261.
https://doi.org/10.7326/M16-0031
[7]  Nicoletta, R., Kevin, V., Kieron, H., et al. (2018) Biomarkers for the Diagnosis of Venous Thromboembolism: D-Dimer, Thrombin Generation, Procoagulant Phospholipid and Soluble P-Selectin. Journal of Clinical Pathology, 71, 1015-1022.
https://doi.org/10.1136/jclinpath-2018-205293
[8]  Schaefer, J.K., Jacobs, B., Wakefield, T.W., et al. (2017) New Biomarkers and Imaging Approaches for the Diagnosis of Deep Venous Thrombosis. Current Opinion in Hematology, 24, 274-281.
https://doi.org/10.1097/MOH.0000000000000339
[9]  Huu, D.N., Kikuchi, D., Maruyama, O., et al. (2017) Cole-Cole Analysis of Thrombus Formation in an Extracorporeal Blood Flow Circulation Using Electrical Measurement. Flow Measurement and Instrumentation, 53, 172-179.
https://doi.org/10.1016/j.flowmeasinst.2016.06.025
[10]  Ozcinar, E., Cakici, M., Dikmen, Y.N., et al. (2017) Thrombus Resolution and Right Ventricular Functional Recovery Using Ultrasound-Accelerated Thrombolysis in Acute Massive and Submassive Pulmonary Embolism. International Angiology, 36, 428-437.
[11]  Yuta, H., Rie, S., Takahiro, S., et al. (2018) The Utility of Superb Microvascular Imaging for the Detection of Deep Vein Thrombosis. Journal of Medical Ultrasonics, 45, 665-669.
https://doi.org/10.1007/s10396-018-0883-0
[12]  Yusof, N.N.M., Mccann, A., Little, P.J., et al. (2019) Non-Invasive Imaging Techniques for the Differentiation of Acute and Chronic Thrombosis. Thrombosis Research, 177, 161-171.
https://doi.org/10.1016/j.thromres.2019.03.009
[13]  Bock, L., Yu, Y., Alex, L.H., et al. (2017) A Unique Recombinant Fluoroprobe Targeting Activated Platelets Allows in Vivo Detection of Arterial Thrombosis and Pulmonary Embolism Using a Novel Three-Dimensional Fluorescence Emission Computed Tomography (FLECT) Technology. Theranostics, 7, 1047-1061.
https://doi.org/10.7150/thno.18099
[14]  Daisuke, S., Tatsuki, F., Katsuhiro, O., et al. (2018) Development of a Real-Time and Quantitative Thrombus Sensor for an Extracorporeal Centrifugal Blood Pump by Near-Infrared Light. Biomedical Optics Express, 9, 190-201.
https://doi.org/10.1364/BOE.9.000190
[15]  Hafsa, K., Brent, L.B., et al. (2018) Evaluating Blood Clot Progression Using Magnetic Particle Spectroscopy. Medical Physics, 45, 3258-3264.
https://doi.org/10.1002/mp.12983
[16]  Li, J.P., et al. (2019) Quantitative Detection and Evaluation of Thrombus Formation Based on Electrical Impedance Spectroscopy. Biosensors& Bioelectronics, 141, Article ID: 111437.
https://doi.org/10.1016/j.bios.2019.111437
[17]  Christina, F., Ezin, D., Alexander, S., et al. (2018) An Acoustic Method for Systematic Ventricular Assist Device Thrombus Evaluation with a Novel Artificial Thrombus Model. Journal of Thoracic Disease, 10, S1711-S1719.
https://doi.org/10.21037/jtd.2018.04.11
[18]  Yoshitaka, S., Masato, W., Nobuaki, S., et al. (2017) Quantified Coronary Frequency Domain Optical Coherence Tomography Signal Analysis for the Evaluation of Erythrocyte-Rich Thrombus: Ex-Vivo Validation Study. International Journal of Cardiovascular Imaging, 33, 587-594.
https://doi.org/10.1007/s10554-016-1038-2
[19]  Xu, J., et al. (2017) Phase Transition Nanoparticles as Multimodality Contrast Agents for the Detection of Thrombi and for Targeting Thrombolysis: In Vitro and In Vivo Experiments. ACS Applied Materials & Interfaces, 9, 42525-42535.
https://doi.org/10.1021/acsami.7b12689
[20]  El-kawy, O.A. and Garc?a-horsman, J.A. (2017) 99mTc-Roxififiban: A Potential Molecular Imaging Agent for the Detection and Localization of Acute Venous Thrombosis. Journal of Radioanalytical and Nuclear Chemistry, 311, 1719- 1728.
https://doi.org/10.1007/s10967-017-5183-4
[21]  Wookhyun, K., Carolyn, H., Erbin, D., et al. (2015) Targeted Antithrombotic Protein Micelles. Angewandte Chemie International Edition, 54, 1461-1465.
https://doi.org/10.1002/anie.201408529
[22]  Ziegler, M., Alt, K., Paterson, B.M., et al. (2016) Highly Sensitive Detection of Minimal Cardiac Ischemia Using Positron Emission Tomography Imaging of Activated Platelets. Scientific Reports, 6, Article No. 38161.
https://doi.org/10.1038/srep38161
[23]  Chanwoo, K., Jae, S.L., Youngjin, H., et al. (2019) Glycoprotein IIb/IIIa Receptor Imaging with 18F-GP1 PET for Acute Venous Thromboembolism: An Open-Label, Nonrandomized, Phase 1 Study. Journal of Nuclear Medicine, 60, 224-251.
https://doi.org/10.2967/jnumed.118.212084
[24]  Kwon, S.P., Jeon, S., Lee, S.H., et al. (2018) Thrombin-Activatable Fluorescent Peptide Incorporated Gold Nanoparticles for Dual Optical/Computed Tomography Thrombus Imaging. Biomaterials, 150, 125-136.
https://doi.org/10.1016/j.biomaterials.2017.10.017
[25]  Bruno, L.O., Francesco, B., Tyson, A.R., et al. (2015) Multimodal Molecular Imaging Reveals High Target Uptake and Specifificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. Journal of Nuclear Medicine, 56, 1587-1592.
https://doi.org/10.2967/jnumed.115.160754
[26]  Eric, M.G., Iliyana, P.A., Rancesco, B., et al. (2015) A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Oil Chemists Society, 137, 15548-15557.
https://doi.org/10.1021/jacs.5b10748
[27]  Ali, O., Virgile, B., Nicolas, R., et al. (2018) Imaging Thrombosis with 99mTc-Labeled RAM. 1-Antibody In Vivo. Nuclear Medicine and Biology, 61, 21-27.
https://doi.org/10.1016/j.nucmedbio.2018.03.003
[28]  Sedigheh, R., Atefeh, H.B., Abolghasem, M., et al. (2017) Synthesis and Biological Evaluation of Cyclic [99mTc]- HYNIC-CGPRPPC as a Fibrin-Binding Peptide for Molecular Imaging of Thrombosis and Its Comparison with [99mTc]-HYNIC-GPRPP. Molecular Imaging and Biology, 19, 256-264.
https://doi.org/10.1007/s11307-016-1004-3
[29]  Sedigheh, R., Mona, M., Abolghasem, M., et al. (2018) [18F]FDG-Labeled CGPRPPC Peptide Serving as a Small Thrombotic Lesions Probe, Including a Comparison with [99mTc]-Labeled Form. Cancer Biotherapy and Radiopharmaceuticals, 33, 438-445.
https://doi.org/10.1089/cbr.2018.2515
[30]  Grace, C., Walter, J.A., Michael, J.S., et al. (2018) Diagnosis of LVAD Thrombus Using a High-Avidity Fibrin-Specific Tc-99m Probe. Theranostics, 8, 1168-1179.
https://doi.org/10.7150/thno.20271
[31]  Wang, T., Yuan, C., Dai, B., et al. (2017) Click-Chemistry-Mediated Rapid Microbubble Capture for Acute Thrombus Ultrasound Molecular Imaging. Chembiochem, 18, 1364-1368.
https://doi.org/10.1002/cbic.201700068
[32]  Eric, A.O., Chase, W.K., Ahmed, T., et al. (2017) Metabolic and Molecular Imaging of Atherosclerosis and Venous Thromboembolism. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 58, 871-877.
https://doi.org/10.2967/jnumed.116.182873

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133