|
动静脉血栓检测的检验及影像学研究进展
|
Abstract:
[1] | Lippi, G. and Favaloro, E.J. (2018) Venous and Arterial Thromboses: Two Sides of the Same Coin? Seminars in Thrombosis and Hemostasis, 44, 239-248. https://doi.org/10.1055/s-0037-1607202 |
[2] | Kearon, C., Akl, E.A., Ornelas, J., et al. (2016) Antithrombotic Therapy for VTE Disease: CHEST Guideline and Expert Panel Report. Chest, 149, 315-352. https://doi.org/10.1016/j.chest.2015.11.026 |
[3] | Fiodorenko-dumas, ?., Dumas, I., Mastej, K., et al. (2019) Receptor GP IIb/IIIa as an Indicator of Risk in Vascular Events. Clinical and Applied Thrombosis/Hemostasis, 25. https://doi.org/10.1177/1076029619845056 |
[4] | 杨延宗, 马长生, 高连君, 等. 心房颤动[M]. 北京: 人民卫生出版社, 2017: 384-386. |
[5] | Walton, B.L., Byrnes, J.R. and Wolberg, A.S. (2015) Fibrinogen, Red Blood Cells, and Factor XIII in Venous Thrombosis. Journal of Thrombosis and Haemostasis, 13, S208-S215. https://doi.org/10.1111/jth.12918 |
[6] | Van, E.N., et al. (2016) Wells Rule and D-Dimer Testing to Rule out Pulmonary Embolism: A Systematic Review and Individual-Patient Data Meta-Analysis. Annals of Internal Medicine, 165, 253-261. https://doi.org/10.7326/M16-0031 |
[7] | Nicoletta, R., Kevin, V., Kieron, H., et al. (2018) Biomarkers for the Diagnosis of Venous Thromboembolism: D-Dimer, Thrombin Generation, Procoagulant Phospholipid and Soluble P-Selectin. Journal of Clinical Pathology, 71, 1015-1022. https://doi.org/10.1136/jclinpath-2018-205293 |
[8] | Schaefer, J.K., Jacobs, B., Wakefield, T.W., et al. (2017) New Biomarkers and Imaging Approaches for the Diagnosis of Deep Venous Thrombosis. Current Opinion in Hematology, 24, 274-281.
https://doi.org/10.1097/MOH.0000000000000339 |
[9] | Huu, D.N., Kikuchi, D., Maruyama, O., et al. (2017) Cole-Cole Analysis of Thrombus Formation in an Extracorporeal Blood Flow Circulation Using Electrical Measurement. Flow Measurement and Instrumentation, 53, 172-179.
https://doi.org/10.1016/j.flowmeasinst.2016.06.025 |
[10] | Ozcinar, E., Cakici, M., Dikmen, Y.N., et al. (2017) Thrombus Resolution and Right Ventricular Functional Recovery Using Ultrasound-Accelerated Thrombolysis in Acute Massive and Submassive Pulmonary Embolism. International Angiology, 36, 428-437. |
[11] | Yuta, H., Rie, S., Takahiro, S., et al. (2018) The Utility of Superb Microvascular Imaging for the Detection of Deep Vein Thrombosis. Journal of Medical Ultrasonics, 45, 665-669. https://doi.org/10.1007/s10396-018-0883-0 |
[12] | Yusof, N.N.M., Mccann, A., Little, P.J., et al. (2019) Non-Invasive Imaging Techniques for the Differentiation of Acute and Chronic Thrombosis. Thrombosis Research, 177, 161-171. https://doi.org/10.1016/j.thromres.2019.03.009 |
[13] | Bock, L., Yu, Y., Alex, L.H., et al. (2017) A Unique Recombinant Fluoroprobe Targeting Activated Platelets Allows in Vivo Detection of Arterial Thrombosis and Pulmonary Embolism Using a Novel Three-Dimensional Fluorescence Emission Computed Tomography (FLECT) Technology. Theranostics, 7, 1047-1061.
https://doi.org/10.7150/thno.18099 |
[14] | Daisuke, S., Tatsuki, F., Katsuhiro, O., et al. (2018) Development of a Real-Time and Quantitative Thrombus Sensor for an Extracorporeal Centrifugal Blood Pump by Near-Infrared Light. Biomedical Optics Express, 9, 190-201.
https://doi.org/10.1364/BOE.9.000190 |
[15] | Hafsa, K., Brent, L.B., et al. (2018) Evaluating Blood Clot Progression Using Magnetic Particle Spectroscopy. Medical Physics, 45, 3258-3264. https://doi.org/10.1002/mp.12983 |
[16] | Li, J.P., et al. (2019) Quantitative Detection and Evaluation of Thrombus Formation Based on Electrical Impedance Spectroscopy. Biosensors& Bioelectronics, 141, Article ID: 111437. https://doi.org/10.1016/j.bios.2019.111437 |
[17] | Christina, F., Ezin, D., Alexander, S., et al. (2018) An Acoustic Method for Systematic Ventricular Assist Device Thrombus Evaluation with a Novel Artificial Thrombus Model. Journal of Thoracic Disease, 10, S1711-S1719.
https://doi.org/10.21037/jtd.2018.04.11 |
[18] | Yoshitaka, S., Masato, W., Nobuaki, S., et al. (2017) Quantified Coronary Frequency Domain Optical Coherence Tomography Signal Analysis for the Evaluation of Erythrocyte-Rich Thrombus: Ex-Vivo Validation Study. International Journal of Cardiovascular Imaging, 33, 587-594. https://doi.org/10.1007/s10554-016-1038-2 |
[19] | Xu, J., et al. (2017) Phase Transition Nanoparticles as Multimodality Contrast Agents for the Detection of Thrombi and for Targeting Thrombolysis: In Vitro and In Vivo Experiments. ACS Applied Materials & Interfaces, 9, 42525-42535. https://doi.org/10.1021/acsami.7b12689 |
[20] | El-kawy, O.A. and Garc?a-horsman, J.A. (2017) 99mTc-Roxififiban: A Potential Molecular Imaging Agent for the Detection and Localization of Acute Venous Thrombosis. Journal of Radioanalytical and Nuclear Chemistry, 311, 1719- 1728. https://doi.org/10.1007/s10967-017-5183-4 |
[21] | Wookhyun, K., Carolyn, H., Erbin, D., et al. (2015) Targeted Antithrombotic Protein Micelles. Angewandte Chemie International Edition, 54, 1461-1465. https://doi.org/10.1002/anie.201408529 |
[22] | Ziegler, M., Alt, K., Paterson, B.M., et al. (2016) Highly Sensitive Detection of Minimal Cardiac Ischemia Using Positron Emission Tomography Imaging of Activated Platelets. Scientific Reports, 6, Article No. 38161.
https://doi.org/10.1038/srep38161 |
[23] | Chanwoo, K., Jae, S.L., Youngjin, H., et al. (2019) Glycoprotein IIb/IIIa Receptor Imaging with 18F-GP1 PET for Acute Venous Thromboembolism: An Open-Label, Nonrandomized, Phase 1 Study. Journal of Nuclear Medicine, 60, 224-251. https://doi.org/10.2967/jnumed.118.212084 |
[24] | Kwon, S.P., Jeon, S., Lee, S.H., et al. (2018) Thrombin-Activatable Fluorescent Peptide Incorporated Gold Nanoparticles for Dual Optical/Computed Tomography Thrombus Imaging. Biomaterials, 150, 125-136.
https://doi.org/10.1016/j.biomaterials.2017.10.017 |
[25] | Bruno, L.O., Francesco, B., Tyson, A.R., et al. (2015) Multimodal Molecular Imaging Reveals High Target Uptake and Specifificity of 111In- and 68Ga-Labeled Fibrin-Binding Probes for Thrombus Detection in Rats. Journal of Nuclear Medicine, 56, 1587-1592. https://doi.org/10.2967/jnumed.115.160754 |
[26] | Eric, M.G., Iliyana, P.A., Rancesco, B., et al. (2015) A Manganese Alternative to Gadolinium for MRI Contrast. Journal of the American Oil Chemists Society, 137, 15548-15557. https://doi.org/10.1021/jacs.5b10748 |
[27] | Ali, O., Virgile, B., Nicolas, R., et al. (2018) Imaging Thrombosis with 99mTc-Labeled RAM. 1-Antibody In Vivo. Nuclear Medicine and Biology, 61, 21-27. https://doi.org/10.1016/j.nucmedbio.2018.03.003 |
[28] | Sedigheh, R., Atefeh, H.B., Abolghasem, M., et al. (2017) Synthesis and Biological Evaluation of Cyclic [99mTc]- HYNIC-CGPRPPC as a Fibrin-Binding Peptide for Molecular Imaging of Thrombosis and Its Comparison with [99mTc]-HYNIC-GPRPP. Molecular Imaging and Biology, 19, 256-264. https://doi.org/10.1007/s11307-016-1004-3 |
[29] | Sedigheh, R., Mona, M., Abolghasem, M., et al. (2018) [18F]FDG-Labeled CGPRPPC Peptide Serving as a Small Thrombotic Lesions Probe, Including a Comparison with [99mTc]-Labeled Form. Cancer Biotherapy and Radiopharmaceuticals, 33, 438-445. https://doi.org/10.1089/cbr.2018.2515 |
[30] | Grace, C., Walter, J.A., Michael, J.S., et al. (2018) Diagnosis of LVAD Thrombus Using a High-Avidity Fibrin-Specific Tc-99m Probe. Theranostics, 8, 1168-1179. https://doi.org/10.7150/thno.20271 |
[31] | Wang, T., Yuan, C., Dai, B., et al. (2017) Click-Chemistry-Mediated Rapid Microbubble Capture for Acute Thrombus Ultrasound Molecular Imaging. Chembiochem, 18, 1364-1368. https://doi.org/10.1002/cbic.201700068 |
[32] | Eric, A.O., Chase, W.K., Ahmed, T., et al. (2017) Metabolic and Molecular Imaging of Atherosclerosis and Venous Thromboembolism. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 58, 871-877.
https://doi.org/10.2967/jnumed.116.182873 |