全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离子碘向元素碘转化行为模型研究
Study on Models for the Conversion Behavior of Iodine Ions to Elemental Iodine in Aqueous Solutions

DOI: 10.12677/NST.2020.84028, PP. 237-243

Keywords: 核电厂,辐照,事故,离子碘向元素碘转化,模型,转化份额
Nuclear Power Plant
, Radiation, Accident, Conversion of I? to II2, Models, Conversion Fraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

在辐照条件下,溶液中会发生离子碘(I)向元素碘(I2)的转化现象,导致I2从溶液中挥发出来,从而对事故源项产生重要影响,该现象在核电厂的事故源项分析中得到了极大的关注。本文对无辐照条件、辐照条件的碘化学模型进行了归纳总结,对美国核管会NUREG/CR-5950中的公式推导及反应率常数进行了介绍,可用于支持确定论事故后果分析,最后给出了总结和后续研究建议。
Radiolytic conversion of iodine ions (I) to elemental iodine (I2) occurs in aqueous solutions under radiation, resulting in the escape of I2 from the solution. This phenomenon could influence the accident source term significantly so that it has to be considered seriously when performing accident source term analysis. In this paper, the iodine chemical model without irradiation condition and irradiation condition is summarized. The formula promotion and reaction rate constant in NUREG/CR-5950 of Nuclear Regulatory Commission of the United States are introduced, which can be used to support deterministic accident consequence analysis. Finally, a summary and suggestions for further research are given.

References

[1]  Allelein, H.J., Neu, K., Van Dorsselaere, J.P., Müeller, K., Kostka, P., Barnak, M., Matejovic, P., Bujan, A. and Slaby, J. (2003) European Validation of the Integral Code ASTEC (EVITA). Nuclear Engineering and Design, 221, 95.
https://doi.org/10.1016/S0029-5493(02)00346-1
[2]  Whitman, W.G. (1923) A Preliminary Experimental Confirmation of the Two-Film-Theory of Gas Adsorption. Chemical and Metallurgical Engineering, 29, 146.
[3]  Clement, B., Cantrel, L., Ducros, G., Funke, F., Herranz, L., Rydl, A., Weber, G. and Wren, C. (2007) State of the Art Report on Iodine Chemistry. Organisation for Economic Co-Operation and Development Nuclear Energy Agency Committee on the Safety of Nuclear Installations.
[4]  Cantrel, L. and March, P. (2006) Mass Transfer Modeling with and without Evaporation for Iodine Chemistry in the Case of a Severe Accident. Nuclear Technology, 154, 170.
https://doi.org/10.13182/NT06-A3726
[5]  Perry, R.H. and Green, D.W. (1997) Perry’s Chemical Engineers’ Handbook. 7th Edition, McGraw-Hill, New York.
[6]  Bosland, L., Funke, F., Girault, N. and Langrock, G. (2008) PARIS Project: Radiolytic Oxidation of Molecular Iodine in Containment during a Nuclear Reactor Severe Accident. Part 1. Formation and Destruction of Air Radiolysis Products—Experimental Results and Modelling. Nuclear Engineering and Design, 238, 3542.
https://doi.org/10.1016/j.nucengdes.2008.06.023
[7]  Beahm, E.C., Shockley, W.E. and Weber, C.F. (1986) Chemistry and Transport of Iodine in Containment. Proc. Symp. Source Term Evaluation for Accident Conditions, Columbus, Ohio, 28 October-1 November 1985, International Atomic Energy Agency, 479.
[8]  Postma, A.K. and Zadovski, R.W. (1972) Review of Organic Iodide. Formation under Accident Conditions in Water- Cooled Reactors. WASH-1233, US Atomic Energy Commission.
https://doi.org/10.2172/4258832
[9]  Funke, F. (1999) Data Analysis and Modelling of Organic Iodide Production at Painted Surfaces. Proceedings of OECD Workshop Iodine Aspects of Severe Accident Management, Vantaa, 18-20 May 1999, Organisation for Economic Co-Operation and Development, 151.
[10]  Guilbert, S. (2006) S2_6_1 EPICUR Test Report. ISTP No. 24, Institut de Radioprotection et de S?reté Nucléaire.
[11]  Guilbert, S. (2007) S2_6_2 EPICUR Test Report. ISTP No. 35, Institut de Radioprotection et de S?reté Nucléaire.
[12]  Beahm, E.C., et al. (1992) Iodine Evolution and pH Control, NUREG/CR-5950, US Nuclear Regulatory Commission.
[13]  Lin, C.C. (1980) Chemical Effects of Gamma Radiation on Iodine in Aqueous Solutions. Journal of Inorganic & Nuclear Chemistry, 42, 1101-1107.
https://doi.org/10.1016/0022-1902(80)80417-9

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133