全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

椎间盘退变信号通路的研究进展
Research Progress of the Signal Pathway of Intervertebral Disc Degeneration

DOI: 10.12677/ACM.2020.1010351, PP. 2329-2336

Keywords: 椎间盘,退变,信号通路
Intervertebral Disc
, Degeneration, Signaling Pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

椎间盘退变是引起腰痛的诸多要素中的主要因素之一,其退变是一个细胞分子损伤长时间积累的过程,该过程破坏了组织细胞内的稳态,最终造成生理功能的衰退。椎间盘退变的机制还未被完全阐明。在椎间盘退变的过程中,信号通路发挥着十分重要的作用,其中包括MAPK、Wnt/β-catenin、NF-κB、Notch、PI3K/Akt等多种信号通路的改变,这些信号通路又相互交叉作用形成了一个错综复杂的信号通路网络,共同参与椎间盘退变的调控。随着对细胞信号通路研究的深入,椎间盘退变的原因将进一步被阐明,同时为其临床治疗提供新的思路。现将最近几年来椎间盘退变信号通路的研究进展综述如下。
Intervertebral disc degeneration is one of the main factors that cause low back pain. Its degeneration is a process of long-term accumulation of cellular and molecular damage, which destroys the homeostasis of tissue cells and ultimately leads to the decline of physiological functions. The mechanism of disc degeneration has not been fully elucidated. In the process of intervertebral disc degeneration, signal pathways play a very important role, including changes in many signal pathways such as MAPK, Wnt/β-catenin, NF-κB, Notch, PI3K/Akt, and these signal pathways cross each other. The role forms an intricate network of signaling pathways, which jointly participate in the regulation of intervertebral disc degeneration. With the in-depth research on cell signaling pathways, the causes of intervertebral disc degeneration will be further clarified, and at the same time provide new ideas for its clinical treatment. The research progress of intervertebral disc degeneration signaling pathway in recent years is summarized as follows.

References

[1]  Huang, P., Han, J. and Hui, L. (2010) MAPK Signaling in Inflammation-Associated Cancer Development. Protein & Cell, 1, 218-226.
https://doi.org/10.1007/s13238-010-0019-9
[2]  Kim, J.H., Studer, R.K., Vo, N.V., et al. (2009) p38 MAPK Inhibition Selectively Mitigates Inflammatory Mediators and VEGF Production in AF Cells Co-Cultured with Activated Macrophage-Like THP-1 Cells. Osteoarthritis and Cartilage, 17, 1662-1669.
https://doi.org/10.1016/j.joca.2009.06.004
[3]  Séguin, C.A., Pilliar, R.M., Madri, J.A., et al. (2008) TNF-Alpha Induces MMP2 Gelatinase Activity and MT1-MMP Expression in an in Vitro Model of Nucleus Pulposus Tissue Degeneration. Spine, 33, 356-365.
https://doi.org/10.1097/BRS.0b013e3181642a5e
[4]  陈建勇, 王聪, 王娟, 等. MAPK信号通路研究进展[J]. 中国医药科学, 2011, 1(8): 32-34.
[5]  Zhang, J., Li, Z., Chen, F., et al. (2017) TGF-β1 Suppresses CCL3/4 Expression through the ERK Signaling Pathway and Inhibits Intervertebral Disc Degeneration and Inflammation-Related Pain in a Rat Model. Experimental & Molecular Medicine, 49, e379.
https://doi.org/10.1038/emm.2017.136
[6]  Wang, T., Wang, C.J., Tian, S., et al. (2019) Overexpressed IGFBP5 Promotes Cell Proliferation and Inhibits Apoptosis of Nucleus Pulposus Derived from Rats with Disc Degeneration through Inactivating the ERK/MAPK Axis. Journal of Cellular Biochemistry, 120, 18782-18792.
https://doi.org/10.1002/jcb.29191
[7]  Mi, D., Cai, C., Zhou, B., et al. (2018) Long Noncoding RNA FAF1 Promotes Intervertebral Disc Degeneration by Targeting the Erk Signaling Pathway. Molecular Medicine Reports, 17, 3158-3163.
https://doi.org/10.3892/mmr.2017.8237
[8]  Han, Y.C., Ma, B., Guo, S., et al. (2018) Leptin Regulates Disc Cartilage Endplate Degeneration and Ossification through Activation of the MAPK-ERK Signalling Pathway in Vivo and in Vitro. Journal of Cellular and Molecular Medicine, 22, 2098-2109.
https://doi.org/10.1111/jcmm.13398
[9]  Sun, Y., Shi, X., Peng, X., et al. (2020) MicroRNA-181a Exerts Anti-Inflammatory Effects via Inhibition of the ERK Pathway in Mice with Intervertebral Disc Degeneration. Journal of Cellular Physiology, 235, 2676-2686.
https://doi.org/10.1002/jcp.29171
[10]  Cuadrado, A. and Nebreda, A.R. (2010) Mechanisms and Functions of p38 MAPK Signalling. The Biochemical Journal, 429, 403-417.
https://doi.org/10.1042/BJ20100323
[11]  Pang, L., Li, P., Zhang, R., et al. (2017) Role of p38-MAPK Pathway in the Effects of High-Magnitude Compression on Nucleus Pulposus Cell Senescence in a Disc Perfusion Culture. Bioscience Reports, 37, BSR20170718.
https://doi.org/10.1042/BSR20170718
[12]  Krupkova, O., Sadowska, A., Kameda, T., et al. (2018) p38 MAPK Facilitates Crosstalk between Endoplasmic Reticulum Stress and IL-6 Release in the Intervertebral Disc. Frontiers in Immunology, 9, 1706.
https://doi.org/10.3389/fimmu.2018.01706
[13]  Fu, J., Yu, W. and Jiang, D. (2018) Acidic pH Promotes Nucleus Pulposus Cell Senescence through Activating the p38 MAPK Pathway. Bioscience Reports, 38, BSR20181451.
https://doi.org/10.1042/BSR20181451
[14]  Xu, Q., Fang, H., Zhao, L., et al. (2019) Mechano Growth Factor Attenuates Mechanical Overload-Induced Nucleus Pulposus Cell Apoptosis through Inhibiting the p38 MAPK Pathway. Bioscience Reports, 39, BSR20182462.
https://doi.org/10.1042/BSR20182462
[15]  Shan, L., Yang, D., Zhu, D., et al. (2019) High Glucose Promotes Annulus Fibrosus Cell Apoptosis through Activating the JNK and p38 MAPK Pathways. Bioscience Reports, 39, BSR20190853.
https://doi.org/10.1042/BSR20190853
[16]  Ni, L., Zheng, Y., Gong, T., et al. (2019) Proinflammatory Macrophages Promote Degenerative Phenotypes in Rat Nucleus Pulpous Cells Partly through ERK and JNK Signaling. Journal of Cellular Physiology, 234, 5362-5371.
https://doi.org/10.1002/jcp.27507
[17]  Wang, J., Pan, H., Li, X., et al. (2017) Hypoxia Suppresses Serum Deprivation-Induced Degradation of the Nucleus Pulposus Cell Extracellular Matrix through the JNK and NF-kappaB Pathways. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 35, 2059-2066.
https://doi.org/10.1002/jor.23486
[18]  Xie, H., Jing, Y., Xia, J., et al. (2016) Aquaporin 3 Protects against Lumbar Intervertebral Disc Degeneration via the Wnt/Beta-Catenin Pathway. International Journal of Molecular Medicine, 37, 859-864.
https://doi.org/10.3892/ijmm.2016.2470
[19]  Wang, J., Chen, H., Cao, P., et al. (2016) Inflammatory Cytokines Induce Caveolin-1/Beta-Catenin Signalling in Rat Nucleus Pulposus Cell Apoptosis through the p38 MAPK Pathway. Cell Proliferation, 49, 362-372.
https://doi.org/10.1111/cpr.12254
[20]  Chen, J., Jia, Y.S., Liu, G.Z., et al. (2017) Role of LncRNA TUG1 in Intervertebral Disc Degeneration and Nucleus Pulposus Cells via Regulating Wnt/Beta-Catenin Signaling Pathway. Biochemical and Biophysical Research Communications, 491, 668-674.
https://doi.org/10.1016/j.bbrc.2017.07.146
[21]  Boman, A., Kokkonen, H., Arlestig, L., et al. (2017) Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL) But Not Sclerostin or Gene Polymorphisms Is Related to Joint Destruction in Early Rheumatoid Arthritis. Clinical Rheumatology, 36, 1005-1012.
https://doi.org/10.1007/s10067-017-3570-4
[22]  Sun, Z., Yin, Z., Liu, C., et al. (2015) The Changes in the Expression of NF-KB in a Degenerative Human Intervertebral Disc Model. Cell Biochemistry and Biophysics, 72, 115-122.
https://doi.org/10.1007/s12013-014-0417-3
[23]  Sun, Z.Y., et al. (2015) Effects of Nuclear Factor Kappa B Signaling Pathway in Human Intervertebral Disc Degeneration. Spine, 40, 224-232.
https://doi.org/10.1097/BRS.0000000000000733
[24]  Shen, J., Fang, J., Hao, J., et al. (2016) SIRT1 Inhibits the Catabolic Effect of IL-1beta through TLR2/SIRT1/NF-kappaB Pathway in Human Degenerative Nucleus Pulposus Cells. Pain Physician, 19, E215-E226.
[25]  Liu, Z., Ma, C., Shen, J., et al. (2016) SDF1/CXCR4 Axis Induces Apoptosis of Human Degenerative Nucleus Pulposus Cells via the NFkappaB Pathway. Molecular Medicine Reports, 14, 783-789.
https://doi.org/10.3892/mmr.2016.5341
[26]  Wang, H., Tian, Y., Wang, J., et al. (2013) Inflammatory Cytokines Induce NOTCH Signaling in Nucleus Pulposus Cells: Implications in Intervertebral Disc Degeneration. The Journal of Biological Chemistry, 288, 16761-16774.
https://doi.org/10.1074/jbc.M112.446633
[27]  Hiyama, A., Skubutyte, R., Markova, D., et al. (2011) Hypoxia Activates the Notch Signaling Pathway in Cells of the Intervertebral Disc: Implications in Degenerative Disc Disease. Arthritis and Rheumatism, 63, 1355-1364.
https://doi.org/10.1002/art.30246
[28]  Zhang, X., Qiao, B., Hu, Z., et al. (2019) BMP9 Promotes the Extracellular Matrix of Nucleus Pulposus Cells via Inhibition of the Notch Signaling Pathway. DNA and Cell Biology, 38, 358-366.
https://doi.org/10.1089/dna.2018.4478
[29]  Wei, R., Chen, Y., Zhao, Z., et al. (2019) LncRNA FAM83H-AS1 Induces Nucleus Pulposus Cell Growth via Targeting the Notch Signaling Pathway. Journal of Cellular Physiology, 234, 22163-22171.
https://doi.org/10.1002/jcp.28780
[30]  Ahmad, A., Biersack, B., Li, Y., et al. (2013) Targeted Regulation of PI3K/Akt/mTOR/NF-kappaB Signaling by Indole Compounds and Their Derivatives: Mechanistic Details and Biological Implications for Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 13, 1002-1013.
https://doi.org/10.2174/18715206113139990078
[31]  Ouyang, Z.H., Wang, W.J., Yan, Y.G., et al. (2017) The PI3K/Akt Pathway: A Critical Player in Intervertebral Disc Degeneration. Oncotarget, 8, 57870-57881.
https://doi.org/10.18632/oncotarget.18628
[32]  Liu, G., Cao, P., Chen, H., et al. (2013) MiR-27a Regulates Apoptosis in Nucleus Pulposus Cells by Targeting PI3K. PLoS ONE, 8, e75251.
https://doi.org/10.1371/journal.pone.0075251
[33]  Wang, B., Wang, D., Yan, T., et al. (2016) MiR-138-5p Promotes TNF-Alpha-Induced Apoptosis in Human Intervertebral Disc Degeneration by Targeting SIRT1 through PTEN/PI3K/Akt Signaling. Experimental Cell Research, 345, 199-205.
https://doi.org/10.1016/j.yexcr.2016.05.011
[34]  Jia, P., Yu, L., Tao, C., et al. (2017) Chitosan Oligosaccharides Protect Nucleus Pulposus Cells from Hydrogen Peroxide-Induced Apoptosis in a Rat Experimental Model. Biomedicine & Pharmacotherapy, 93, 807-815.
https://doi.org/10.1016/j.biopha.2017.06.101

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133