|
自噬在食管鳞癌中的研究进展
|
Abstract:
[1] | Domper Arnal, M.J., Ferrández Arenas, á. and Lanas Arbeloa, á. (2015) Esophageal Cancer: Risk Factors, Screening and Endoscopic Treatment in Western and Eastern Countries. World Journal of Gastroenterology, 21, 7933-7943.
https://doi.org/10.3748/wjg.v21.i26.7933 |
[2] | Mizushima, N. and Komatsu, M. (2011) Autophagy: Renovation of Cells and Tissues. Cell, 147, 728-741.
https://doi.org/10.1016/j.cell.2011.10.026 |
[3] | Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364. https://doi.org/10.1038/s41580-018-0003-4 |
[4] | Onorati, A.V., Dyczynski, M., Ojha, R. and Amaravadi, R.K. (2018) Targeting Autophagy in Cancer. Cancer, 124, 3307-3318. https://doi.org/10.1002/cncr.31335 |
[5] | Noda, N.N. and Inagaki, F. (2015) Mechanisms of Autophagy. Annual Review of Biophysics, 44, 101-122.
https://doi.org/10.1146/annurev-biophys-060414-034248 |
[6] | Levine, B., Mizushima, N. and Virgin, H.W. (2011) Autophagy in Immunity and Inflammation. Nature, 469, 323-335.
https://doi.org/10.1038/nature09782 |
[7] | Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: Molecular Machinery for Self-Eating. Cell Death & Differentiation, 12, 1542-1552. https://doi.org/10.1038/sj.cdd.4401765 |
[8] | Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009) Dynamics and Diversity in Autophagy Mechanisms: Lessons from Yeast. Nature Reviews Molecular Cell Biology, 10, 458-467. https://doi.org/10.1038/nrm2708 |
[9] | Kim, Y.C. and Guan, K.L. (2015) mTOR: A Pharmacologic Target for Autophagy Regulation. Journal of Clinical Investigation, 125, 25-32. https://doi.org/10.1172/JCI73939 |
[10] | Wallot-Hieke, N., Verma, N., Schlütermann, D., et al. (2018) Systematic Analysis of ATG13 Domain Requirements for Autophagy Induction. Autophagy, 14, 743-763. https://doi.org/10.1080/15548627.2017.1387342 |
[11] | Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K. and Ohsumi, Y. (2010) Tor Directly Controls the Atg1 Kinase Complex to Regulate Autophagy. Molecular and Cellular Biology, 30, 1049-1058.
https://doi.org/10.1128/MCB.01344-09 |
[12] | Simonsen, A. and Tooze, S.A. (2009) Coordination of Membrane Events during Autophagy by Multiple Class III PI3-Kinase Complexes. Journal of Cell Biology, 186, 773-782. https://doi.org/10.1083/jcb.200907014 |
[13] | Funderburk, S.F., Wang, Q.J. and Yue, Z. (2010) The Beclin 1-VPS34 Complex—At the Crossroads of Autophagy and beyond. Trends in Cell Biology, 20, 355-362. https://doi.org/10.1016/j.tcb.2010.03.002 |
[14] | Guo, F., Liu, X.Y., Cai, H.B. and Le, W.D. (2018) Autophagy in Neurodegenerative Diseases: Pathogenesis and Therapy. Brain Pathology, 28, 3-13. https://doi.org/10.1111/bpa.12545 |
[15] | Tompkins, K.D. and Thorburn, A. (2019) Regulation of Apoptosis by Autophagy to Enhance Cancer Therapy. Yale Journal of Biology and Medicine, 92, 707-718. |
[16] | Hill, S.M., Wrobel, L. and Rubinsztein, D.C. (2019) Post-Translational Modifications of Beclin 1 Provide Multiple Strategies for Autophagy Regulation. Cell Death & Differentiation, 26, 617-629.
https://doi.org/10.1038/s41418-018-0254-9 |
[17] | Wu, N., Zhu, Y.F., Xu, X., et al. (2018) The Anti-Tumor Effects of Dual PI3K/Mtor Inhibitor BEZ235 and Histone Deacetylase Inhibitor Trichostatin A on Inducing Autophagy in Esophageal Squamous Cell Carcinoma. Cancer, 9, 987-997.
https://doi.org/10.7150/jca.22861 |
[18] | Du, H.L., Che, J.M., Shi, M.M., Zhu, L.G., Hang, J.B., Chen, Z.Y. and Li, H.C. (2017) Beclin 1 Expression Is Associated with the Occurrence and Development of Esophageal Squamous Cell Carcinoma. Oncology Letters, 14, 6823-6828.
https://doi.org/10.3892/ol.2017.7015 |
[19] | Mathew, R., Karp, C.M., Beaudoin, B., et al. (2009) Autophagy Suppresses Tumorigenesis through Elimination of P62. Cell, 137, 1062-1075. https://doi.org/10.1016/j.cell.2009.03.048 |
[20] | Xu, H.D. and Qin, Z.H. (2019) Beclin 1, Bcl-2 and Autophagy. Advances in Experimental Medicine and Biology, 1206, 109-126. https://doi.org/10.1007/978-981-15-0602-4_5 |
[21] | Wu, J., Gao, F., Xu, T., et al. (2018) miR-503 Suppresses the Proliferation and Metastasis of Esophageal Squamous Cell Carcinoma by Triggering Autophagy via PKA/Mtor Signaling. International Journal of Oncology, 52, 1427-1442.
https://doi.org/10.3892/ijo.2018.4320 |
[22] | Rosengren, T., Larsen, L.J., Pedersen, L.B., et al. (2018) TSC1 and TSC2 Regulate Cilia Length and Canonical Hedgehog Signaling via Different Mechanisms. Cellular and Molecular Life Sciences, 75, 2663-2680.
https://doi.org/10.1007/s00018-018-2761-8 |
[23] | Sharifi, M.N., Mowers, E.E., Drake, L.E., et al. (2016) Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. Cell Reports, 15, 1660-1672.
https://doi.org/10.1016/j.celrep.2016.04.065 |
[24] | Wu, J., Gao, F.X., Xu, T., et al. (2020) CLDN1 Induces Autophagy to Promote Proliferation and Metastasis of Esophageal Squamous Carcinoma through AMPK/STAT1/ULK1 Signaling. Journal of Cellular Physiology, 235, 2245-2259.
https://doi.org/10.1002/jcp.29133 |
[25] | Feng, Y., Gao, Y.j., Wang, D.Y., Xu, Z.H., Sun, W.X. and Ren, P. (2018) Autophagy Inhibitor (LY294002) and 5-Fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy against Esophageal Squamous Cell. Carcinoma. Nanoscale Research Letters, 13, Article No. 325. https://doi.org/10.1186/s11671-018-2716-x |
[26] | Quan, Y.J., Lei, H.G., Wahafu, W., Liu, Y.X., Ping, H., Zhang X.D. (2019) Inhibition of Autophagy Enhances the Anticancer Effect of Enzalutamide on Bladder Cancer. Biomedicine & Pharmacotherapy, 120, Article ID: 109490.
https://doi.org/10.1016/j.biopha.2019.109490 |
[27] | Yue, D., Zhang, D., Shi, X., et al. (2020) Chloroquine Inhibits Stemness of Esophageal Squamous Cell Carcinoma Cells through Targeting CXCR4-STAT3 Pathway. Frontiers in Oncology, 10, 311.
https://doi.org/10.3389/fonc.2020.00311 |
[28] | Zheng, K., Li, Y., Wang, S.X., et al. (2016) Inhibition of Autophagosome-Lysosome Fusion by Ginsenoside Ro via the ESR2-NCF1-ROS Pathway Sensitizes Esophageal Cancer Cells to 5-Fluorouracil-Induced Cell Death via the CHEK1-Mediated DNA Damage Checkpoint. Autophagy, 12, 1593-1613.
https://doi.org/10.1080/15548627.2016.1192751 |
[29] | Chen, Y.S., Li, X.H., Guo, L.M., et al. (2015) Combining Radiation with Autophagy Inhibition Enhances Suppression of Tumor Growth and Angiogenesis in Esophageal Cancer. Molecular Medicine Reports, 12, 1645-1652.
https://doi.org/10.3892/mmr.2015.3623 |
[30] | Ma, H.B., Zheng, S.Y., Zhang, X.Z., et al. (2019) High Mobility Group Box 1 Promotes Radioresistance in Esophageal Squamous Cell Carcinoma Cell Lines by Modulating Autophagy. Cell Death & Disease, 10, Article No. 136.
https://doi.org/10.1038/s41419-019-1355-1 |
[31] | Jiang, S., Li, Y., Zhu, Y.H., et al. (2011) Intensive Expression of UNC-51-Like Kinase 1 Is a Novel Biomarker of Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma. Cancer Science, 102, 1568-1575.
https://doi.org/10.1111/j.1349-7006.2011.01964.x |
[32] | Keller, C.W., Loi, M., Ewert, S., et al. (2017) The Autophagy Machinery Restrains iNKT Cell Activation through CD1D1 Internalization. Autophagy, 13, 1025-1036. https://doi.org/10.1080/15548627.2017.1297907 |
[33] | Robainas, M., Otano, R., Bueno, S. and Ait-Oudhia, S. (2017) Understanding the Role of PD-L1/PD1 Pathway Blockade and Autophagy in Cancer Therapy. OncoTargets and Therapy, 10, 1803-1807.
https://doi.org/10.2147/OTT.S132508 |