全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自噬在食管鳞癌中的研究进展
Research Progress of Autophagy in Esophageal Squamous Cell Carcinoma

DOI: 10.12677/ACM.2020.1010350, PP. 2323-2328

Keywords: 自噬,食管鳞癌治疗,肿瘤免疫
Autophagy
, Treatment of Esophageal Squamous Cell Carcinoma, Tumor Immunity

Full-Text   Cite this paper   Add to My Lib

Abstract:

自噬属于细胞程序性死亡,通过降解入侵的病原体、清除受损的细胞器及多余的脂质,降解的物质重新被机体利用以维持细胞稳态和器官完整性的作用。随着对自噬研究的逐渐深入,发现其与食管鳞癌的发生、发展密切相关,不仅在肿瘤的发生前期起着抑制作用,而且在食管鳞癌的发展中起到了促进作用。近年来发现在食管鳞癌的治疗中,通过对自噬的干预有着明显的效果。本文主要综述了细胞自噬的过程和机制、在食管鳞癌中的作用以及参与食管鳞癌治疗的研究进展。
Autophagy is a kind of programmed cell death. By degrading invading pathogens, removing damaged organelles and excess lipids, the degraded substances are reused by the body to maintain cell homeostasis and organ integrity. With the deepening of the study on autophagy, it is found that it is closely related to the occurrence and development of esophageal squamous cell carcinoma, which not only plays an inhibitory role in the early stage of the occurrence of tumors, but also plays a promoting role in the development of esophageal cancer. In recent years, it has been found that the intervention of autophagy has obvious effects on the treatment of esophageal cancer. This paper mainly reviews the process and mechanism of autophagy, its role in esophageal cancer and autophagy’s involvement in the treatment of esophageal cancer.

References

[1]  Domper Arnal, M.J., Ferrández Arenas, á. and Lanas Arbeloa, á. (2015) Esophageal Cancer: Risk Factors, Screening and Endoscopic Treatment in Western and Eastern Countries. World Journal of Gastroenterology, 21, 7933-7943.
https://doi.org/10.3748/wjg.v21.i26.7933
[2]  Mizushima, N. and Komatsu, M. (2011) Autophagy: Renovation of Cells and Tissues. Cell, 147, 728-741.
https://doi.org/10.1016/j.cell.2011.10.026
[3]  Dikic, I. and Elazar, Z. (2018) Mechanism and Medical Implications of Mammalian Autophagy. Nature Reviews Molecular Cell Biology, 19, 349-364.
https://doi.org/10.1038/s41580-018-0003-4
[4]  Onorati, A.V., Dyczynski, M., Ojha, R. and Amaravadi, R.K. (2018) Targeting Autophagy in Cancer. Cancer, 124, 3307-3318.
https://doi.org/10.1002/cncr.31335
[5]  Noda, N.N. and Inagaki, F. (2015) Mechanisms of Autophagy. Annual Review of Biophysics, 44, 101-122.
https://doi.org/10.1146/annurev-biophys-060414-034248
[6]  Levine, B., Mizushima, N. and Virgin, H.W. (2011) Autophagy in Immunity and Inflammation. Nature, 469, 323-335.
https://doi.org/10.1038/nature09782
[7]  Yorimitsu, T. and Klionsky, D.J. (2005) Autophagy: Molecular Machinery for Self-Eating. Cell Death & Differentiation, 12, 1542-1552.
https://doi.org/10.1038/sj.cdd.4401765
[8]  Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009) Dynamics and Diversity in Autophagy Mechanisms: Lessons from Yeast. Nature Reviews Molecular Cell Biology, 10, 458-467.
https://doi.org/10.1038/nrm2708
[9]  Kim, Y.C. and Guan, K.L. (2015) mTOR: A Pharmacologic Target for Autophagy Regulation. Journal of Clinical Investigation, 125, 25-32.
https://doi.org/10.1172/JCI73939
[10]  Wallot-Hieke, N., Verma, N., Schlütermann, D., et al. (2018) Systematic Analysis of ATG13 Domain Requirements for Autophagy Induction. Autophagy, 14, 743-763.
https://doi.org/10.1080/15548627.2017.1387342
[11]  Kamada, Y., Yoshino, K., Kondo, C., Kawamata, T., Oshiro, N., Yonezawa, K. and Ohsumi, Y. (2010) Tor Directly Controls the Atg1 Kinase Complex to Regulate Autophagy. Molecular and Cellular Biology, 30, 1049-1058.
https://doi.org/10.1128/MCB.01344-09
[12]  Simonsen, A. and Tooze, S.A. (2009) Coordination of Membrane Events during Autophagy by Multiple Class III PI3-Kinase Complexes. Journal of Cell Biology, 186, 773-782.
https://doi.org/10.1083/jcb.200907014
[13]  Funderburk, S.F., Wang, Q.J. and Yue, Z. (2010) The Beclin 1-VPS34 Complex—At the Crossroads of Autophagy and beyond. Trends in Cell Biology, 20, 355-362.
https://doi.org/10.1016/j.tcb.2010.03.002
[14]  Guo, F., Liu, X.Y., Cai, H.B. and Le, W.D. (2018) Autophagy in Neurodegenerative Diseases: Pathogenesis and Therapy. Brain Pathology, 28, 3-13.
https://doi.org/10.1111/bpa.12545
[15]  Tompkins, K.D. and Thorburn, A. (2019) Regulation of Apoptosis by Autophagy to Enhance Cancer Therapy. Yale Journal of Biology and Medicine, 92, 707-718.
[16]  Hill, S.M., Wrobel, L. and Rubinsztein, D.C. (2019) Post-Translational Modifications of Beclin 1 Provide Multiple Strategies for Autophagy Regulation. Cell Death & Differentiation, 26, 617-629.
https://doi.org/10.1038/s41418-018-0254-9
[17]  Wu, N., Zhu, Y.F., Xu, X., et al. (2018) The Anti-Tumor Effects of Dual PI3K/Mtor Inhibitor BEZ235 and Histone Deacetylase Inhibitor Trichostatin A on Inducing Autophagy in Esophageal Squamous Cell Carcinoma. Cancer, 9, 987-997.
https://doi.org/10.7150/jca.22861
[18]  Du, H.L., Che, J.M., Shi, M.M., Zhu, L.G., Hang, J.B., Chen, Z.Y. and Li, H.C. (2017) Beclin 1 Expression Is Associated with the Occurrence and Development of Esophageal Squamous Cell Carcinoma. Oncology Letters, 14, 6823-6828.
https://doi.org/10.3892/ol.2017.7015
[19]  Mathew, R., Karp, C.M., Beaudoin, B., et al. (2009) Autophagy Suppresses Tumorigenesis through Elimination of P62. Cell, 137, 1062-1075.
https://doi.org/10.1016/j.cell.2009.03.048
[20]  Xu, H.D. and Qin, Z.H. (2019) Beclin 1, Bcl-2 and Autophagy. Advances in Experimental Medicine and Biology, 1206, 109-126.
https://doi.org/10.1007/978-981-15-0602-4_5
[21]  Wu, J., Gao, F., Xu, T., et al. (2018) miR-503 Suppresses the Proliferation and Metastasis of Esophageal Squamous Cell Carcinoma by Triggering Autophagy via PKA/Mtor Signaling. International Journal of Oncology, 52, 1427-1442.
https://doi.org/10.3892/ijo.2018.4320
[22]  Rosengren, T., Larsen, L.J., Pedersen, L.B., et al. (2018) TSC1 and TSC2 Regulate Cilia Length and Canonical Hedgehog Signaling via Different Mechanisms. Cellular and Molecular Life Sciences, 75, 2663-2680.
https://doi.org/10.1007/s00018-018-2761-8
[23]  Sharifi, M.N., Mowers, E.E., Drake, L.E., et al. (2016) Autophagy Promotes Focal Adhesion Disassembly and Cell Motility of Metastatic Tumor Cells through the Direct Interaction of Paxillin with LC3. Cell Reports, 15, 1660-1672.
https://doi.org/10.1016/j.celrep.2016.04.065
[24]  Wu, J., Gao, F.X., Xu, T., et al. (2020) CLDN1 Induces Autophagy to Promote Proliferation and Metastasis of Esophageal Squamous Carcinoma through AMPK/STAT1/ULK1 Signaling. Journal of Cellular Physiology, 235, 2245-2259.
https://doi.org/10.1002/jcp.29133
[25]  Feng, Y., Gao, Y.j., Wang, D.Y., Xu, Z.H., Sun, W.X. and Ren, P. (2018) Autophagy Inhibitor (LY294002) and 5-Fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy against Esophageal Squamous Cell. Carcinoma. Nanoscale Research Letters, 13, Article No. 325.
https://doi.org/10.1186/s11671-018-2716-x
[26]  Quan, Y.J., Lei, H.G., Wahafu, W., Liu, Y.X., Ping, H., Zhang X.D. (2019) Inhibition of Autophagy Enhances the Anticancer Effect of Enzalutamide on Bladder Cancer. Biomedicine & Pharmacotherapy, 120, Article ID: 109490.
https://doi.org/10.1016/j.biopha.2019.109490
[27]  Yue, D., Zhang, D., Shi, X., et al. (2020) Chloroquine Inhibits Stemness of Esophageal Squamous Cell Carcinoma Cells through Targeting CXCR4-STAT3 Pathway. Frontiers in Oncology, 10, 311.
https://doi.org/10.3389/fonc.2020.00311
[28]  Zheng, K., Li, Y., Wang, S.X., et al. (2016) Inhibition of Autophagosome-Lysosome Fusion by Ginsenoside Ro via the ESR2-NCF1-ROS Pathway Sensitizes Esophageal Cancer Cells to 5-Fluorouracil-Induced Cell Death via the CHEK1-Mediated DNA Damage Checkpoint. Autophagy, 12, 1593-1613.
https://doi.org/10.1080/15548627.2016.1192751
[29]  Chen, Y.S., Li, X.H., Guo, L.M., et al. (2015) Combining Radiation with Autophagy Inhibition Enhances Suppression of Tumor Growth and Angiogenesis in Esophageal Cancer. Molecular Medicine Reports, 12, 1645-1652.
https://doi.org/10.3892/mmr.2015.3623
[30]  Ma, H.B., Zheng, S.Y., Zhang, X.Z., et al. (2019) High Mobility Group Box 1 Promotes Radioresistance in Esophageal Squamous Cell Carcinoma Cell Lines by Modulating Autophagy. Cell Death & Disease, 10, Article No. 136.
https://doi.org/10.1038/s41419-019-1355-1
[31]  Jiang, S., Li, Y., Zhu, Y.H., et al. (2011) Intensive Expression of UNC-51-Like Kinase 1 Is a Novel Biomarker of Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma. Cancer Science, 102, 1568-1575.
https://doi.org/10.1111/j.1349-7006.2011.01964.x
[32]  Keller, C.W., Loi, M., Ewert, S., et al. (2017) The Autophagy Machinery Restrains iNKT Cell Activation through CD1D1 Internalization. Autophagy, 13, 1025-1036.
https://doi.org/10.1080/15548627.2017.1297907
[33]  Robainas, M., Otano, R., Bueno, S. and Ait-Oudhia, S. (2017) Understanding the Role of PD-L1/PD1 Pathway Blockade and Autophagy in Cancer Therapy. OncoTargets and Therapy, 10, 1803-1807.
https://doi.org/10.2147/OTT.S132508

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133