全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土壤有机碳及其影响因素
Soil Organic Carbon and Its Influencing Factors

DOI: 10.12677/HJAS.2020.1010123, PP. 803-810

Keywords: 土壤有机碳,地球碳汇,碳平衡
Soil Organic Carbon
, Global Carbon Sink, Carbon Balance

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章综述了土壤有机碳的赋存状态及其变化对地球碳汇的影响,重点分析了影响土壤有机碳的气候、土层深度、母质、地形、粘粒含量、时间、植被等因子的作用;提出了增强土壤有机碳库存的措施,主要有保护性耕作、提高土壤微生物的活性、施肥管理、退化土壤修复、灌溉等,预测了未来土壤有机碳研究的主要方向。
This paper summarized the occurrence of soil organic carbon and its change on the impact of the earth’s carbon sink, focused on the impact of climate, soil depth, parent material, topography, clay content, time, vegetation and other factors on soil organic carbon storage, and put forward measures to enhance soil organic carbon inventory, including conservation tillage, improving soil microbial activity, fertilization management, remediation of degraded soil, irrigation, etc. The main research directions of soil organic carbon in the future are predicted.

References

[1]  Yang, W., Patricia, C., Giorgio, C., et al. (2015) Influence of a CO2 Long Term Exposure on the Mobilisation and Speci-ation of Metals in Soils. Chemieder Erde-Geochemistry, 75, 475-482.
https://doi.org/10.1016/j.chemer.2015.10.003
[2]  Roberto, M., Sara, M., Paola, B., et al. (2015) Organic Mulch-ing, Irrigation and Fertilization Affect Soil CO2 Emission and C Storage in Tomato Crop in the Mediterranean Environ-ment. Soil& Tillage Research, 152, 39-51.
https://doi.org/10.1016/j.still.2015.04.001
[3]  潘根兴, 赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全[J]. 地球科学进展, 2005, 20(4): 384-394.
[4]  Lin, Z.B. and Zhang, R.D. (2012) Dynamics of Soil Or-ganic Carbon under Uncertain Climate Change and Elevated Atmospheric CO2. Pedosphere, 22, 489-496.
https://doi.org/10.1016/S1002-0160(12)60033-2
[5]  潘根兴, 李恋卿, 张旭辉. 土壤有机碳库与全球变化研究的若干前沿问题: 兼谈开展中国水稻土有机碳固定研究的建议[J]. 南京农业大学学报, 2002, 25(3): 100-109.
[6]  Dalal, R.C. and Chan, K.Y. (2001) Soil Organic Matter in Rain Fed Cropping Systems of the Australian Cereal Belt. Australian Journal of Soil Research, 39, 435-464.
https://doi.org/10.1071/SR99042
[7]  Sombroek, W.G., Nachtergaele, F.O. and Hebel, A. (1993) Amounts, Dynamic sand Sequestering of Carbon in Tropical and Sub-tropical Soils. Ambio, 22, 417-426.
[8]  Lal, R., Kimble, J.M., Follet, R.F. and Stewart, B.A. (1997) Soil Processes and the Carbon Cycle. CRC Press LLC, Boca Raton.
[9]  张旭辉, 李恋卿, 潘根兴. 不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J]. 生态学杂志, 2001, 20(2): 16-191.
[10]  黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2010: 189-195.
[11]  Schlesinger, W.H. (1990) Evidence from Chrono Sequence Studies for a Low Carbon Storage Potential of Soils. Nature, 348, 232-234.
https://doi.org/10.1038/348232a0
[12]  姜蓝齐, 臧淑英, 张丽娟, 等. 松嫩平原农田土壤有机碳变化及固碳潜力估算[J]. 生态学报, 2017, 37(21): 7068-7081.
[13]  Hard, J.W., Sundquist, E.T., Stallard, R.F., et al. (1992) Dynamics of Soil Carbon during Deglaciation of the Lauren Tide Ice Sheet. Science, 258, 1921-1924.
[14]  陈庆强, 沈承德, 易惟熙. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6): 555-562.
[15]  Jenny, H. (1980) The Soil Resource Origin and Behavior. Springer, New York, 325-390.
[16]  任秀娥, 童成立, 孙中林. 温度对不同粘粒含量稻田土壤有机碳矿化的影响[J]. 应用生态学报, 2007, 18(10): 2245-2250.
[17]  Tate, R.L. (1987) Soil Organic Matter: Biological and Ecological Effects. John Wiley & Sons, New York, 238-259.
[18]  Paul, E.A. and Clark, F.E. (1989) Soil Microbiology and Biochemistry. Academic Press Inc., New York, 1-31, 91-130.
[19]  王发刚, 王启基, 王文颖, 等. 土壤有机碳研究进展[J]. 草业科学, 2008, 25(2): 48-54.
[20]  Bremer, E., Janzen, H.H. and Johnston, A.M. (1994) Sensitivity of Total, Light Fraction and Mineralize Able Organic Matter to Management Practices in a Lethbridge Soil. Canadian Journal of Soil Science, 74, 131-138.
https://doi.org/10.4141/cjss94-020
[21]  徐梦, 李晓亮, 蔡晓布, 等. 藏东南地区不同土地利用方式下土壤有机碳组分及周转变化特征[J]. 中国农业科学, 2018, 51(19): 3714-3725.
[22]  张赛, 王龙昌. 全球变化背景下农田生态系统碳循环研究[J]. 农机化研究, 2013, 35(1): 4-9.
[23]  张文菊, 徐明岗, 丛日环, 等. 长期施肥对我国典型农田土壤碳平衡的影响[M]//面向未来的土壤科学(下册), 2012: 1654-1657.
[24]  唐英平. 土壤呼吸敏感性及土壤有机碳分解速率的研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2008.
[25]  吴建国, 张小全, 徐德应. 六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较[J]. 植物生态学报, 2004, 28(4): 530-538.
[26]  艾丽, 吴建国, 朱高, 等. 祁连山中部高山草甸土壤有机碳矿化及其影响因素研究[J]. 草业学报, 2007, 16(5): 22-33.
[27]  Lal, R. (2007) Carbon Management in Agricultural Soils. Mitigation and Adaptation Strategies for Global Change, 12, 303-322.
https://doi.org/10.1007/s11027-006-9036-7
[28]  Lal, R. (2008) Carbon Sequestration. Phil-osophical Transactions of the Royal Society B: Biological Sciences, 363, 815-830.
https://doi.org/10.1098/rstb.2007.2185
[29]  Naudin, K., Goz, E., Balarabe, O., et al. (2011) Impact of No Tillage and Mulching Practices on Cotton Production in North Cameroon: A Multi-Locational on Farm Assessment. Soil and Tillage Research, 108, 68-76.
https://doi.org/10.1016/j.still.2010.03.002
[30]  彭少麟. 热带亚热带恢复生态学研究与实践[M]. 北京: 科学出版社, 2003: 275-307.
[31]  贾凤梅, 张淑花, 魏雅冬. 不同耕作方式下玉米农田土壤养分及土壤微生物活性变化[J]. 水土保持研究, 2018, 25(5): 112-117.
[32]  田兴军, 立石贵浩. 亚高山针叶林土壤动物和土壤微生物对针叶的分解作用[J]. 植物生态学报, 2002, 26(3): 257-263.
[33]  杨钙仁, 童成立, 张文菊, 等. 陆地碳循环中的微生物分解作用及其影响因素[J]. 土壤通报, 2005, 36(4): 605-609.
[34]  曹丽花, 刘合满, 杨东升. 农田土壤固碳潜力的影响因素及其调控(综述) [J]. 江苏农业科学, 2016, 44(10): 16-20.
[35]  Gijsman, A.J. and Sanz, J.I. (1998) Soil Or-ganic Matter Pools in a Volcanic-Ash Soil under Fallow or Cultivation with Applied Chicken Manure. European Journal of Soil Science, 49, 427-436.
https://doi.org/10.1046/j.1365-2389.1998.4930427.x
[36]  Aoyama, M., Angers, D.A. and Dayegamiye, A.N. (1999) Particulate and Mineral Associated Organic Matter in Water-Stable Aggregates as Affected by Mineral Fertilizer and Manure Application. Canadian Journal of Soil Science, 79, 295-302.
https://doi.org/10.4141/S98-049
[37]  佟小刚. 长期施肥下我国典型农田土壤有机碳库变化特征[D]: [博士学位论文]. 北京: 中国农业科学院, 2008.
[38]  吴乐知, 蔡祖聪. 农业开垦对中国土壤有机碳的影响[J]. 水土保持学报, 2007, 21(6): 118-121.
[39]  Cole, V., Cerri, C., Minami, K., et al. (1995) Agricultural Options for Mitigation of Greenhouse Gas Emissions. IPCC, Working Group 2, Cambridge University Press, Cambridge, 748-771.
[40]  赵荣钦. 农田生态系统碳源/汇的时空差异及增汇技术研究[D]: [硕士学位论文]. 开封: 河南大学, 2004: 1-55.
[41]  Vandenbygaart, A.J., Gregorich, E.G., Angers, D.A., et al. (2004) Uncertainty Analysis of Soil Organic Carbon Stock Change in Canadian Cropland fron1991 to2001. Global Change Biology, 10, 983-994.
https://doi.org/10.1111/j.1365-2486.2004.00780.x
[42]  Wang, Z.M., Zhang, B., Song, K.S., et al. (2010) Spatial Variability of Soil Organic Carbon under Maize Monoculture in the SongNen Plain, North East China. Pedosphere, 20, 80-89.
https://doi.org/10.1016/S1002-0160(09)60285-X
[43]  Follett, R.F. (2001) Soil Management Concepts and Carbon Sequestration in Cropland Soils. Soil and Tillage Research, 61, 77-92.
https://doi.org/10.1016/S0167-1987(01)00180-5
[44]  Qian, Y., Follett, R.F. and Kimble, J.M. (2010) Soil Organic Carbon Input from Urban Turf Grasses. Soil Science Society of America Journal, 74, 366-371.
https://doi.org/10.2136/sssaj2009.0075
[45]  Martens, U., Lal, R., Slater, B., et al. (2005) Atmospheric Carbon Mitigation Potential of Agricultural Management in the Southwestern USA. Soil and Tillage Research, 83, 95-119.
https://doi.org/10.1016/j.still.2005.02.011
[46]  Masto, R., Chhonkar, P., Singh, D., et al. (2009) Changes in Soil Quality Indicators under Long-Term Sewage Irrigation in a Subtropical Environment. Environmental Geology, 56, 1237-1243.
https://doi.org/10.1007/s00254-008-1223-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133