全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于超临界二氧化碳梳齿密封泄漏实验对现有计算模型评价
Evaluation of Existing Models Based on Experiments of Supercritical Carbon Dioxide Flows through Labyrinth Seal

DOI: 10.12677/NST.2020.84023, PP. 193-202

Keywords: 超临界二氧化碳,布雷顿循环,梳齿密封,模型评估
Supercritical Carbon Dioxide
, Brayton Power Cycle, Labyrinth Seal, Models Evaluation

Full-Text   Cite this paper   Add to My Lib

Abstract:

超临界二氧化碳布雷顿循环系统凭借着效率高、结构紧凑等特点引起了全世界的关注。梳齿式密封作为循环系统旋转机械中非接触式密封形式之一,密封性能决定着系统的循环效率和系统安全性。为了研究超临界二氧化碳系统直通式梳齿密封结构泄漏特性,基于高压条件下梳齿密封结构27组实验数据,评价了2种迭代式计算模型以及2种快速计算模型的预测能力,给出了不同结构参数及热力学参数条件下的适用范围。
The supercritical carbon dioxide Brayton power cycle system has attracted worldwide attention due to its high efficiency and compact structure. Labyrinth seal is one of the non-contact sealing forms in the rotating machine of the cycle system. The sealing performance determines the efficiency and safety of the system. In order to study the leakage characteristics of the labyrinth seal structure in the supercritical carbon dioxide system, the prediction capabilities of two iterative calculation models and two fast calculation models are evaluated, based on 27 groups of experimental data of the labyrinth seal structure. The applicable scope under different structural parameters and thermodynamic parameters are shown.

References

[1]  USDoE (2002) A Technology Roadmap of Generation IV Nuclear Energy Systems. Proceedings of Nuclear Energy Research Advisory Committee and the Generation IV International Forum, Issy-les-Moulineaux.
[2]  Dostal, V., Driscoll, M.J. and Hejzlar, P. (2004) A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors. MIT-ANP-TR-100.
[3]  Pidaparti, S.R. (2013) A Computational Study on the Leakage of Supercritical Carbon Dioxide through Labyrinth Seals. Texas A&M University, College Station.
[4]  Martin (1908) H. M. Labyrinth Packings. Engineering, 35-36.
[5]  Egli, A. (1935) The Leakage of Steam through Labyrinth Seals. Transactions of the ASME, 57, 115-122.
[6]  Hodkinson, B. (1939) Estimation of the Leakage through a Labyrinth Gland. Proceedings of the Institution of Mechanical Engineers, 141, 283-288.
https://doi.org/10.1243/PIME_PROC_1939_141_037_02
[7]  Vermes, G. (1961) A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem. ASME Transactions—Journal of Engineering for Power, 83, 161-169.
https://doi.org/10.1115/1.3673158
[8]  Zimmerman, H. and Wolff, K.H. (1987) Comparison between Empirical and Numerical Labyrinth Flow Correlations. ASME 87-GT-86.
https://doi.org/10.1115/87-GT-86
[9]  Mohamed, A. and Eldin, G. (2007) Leakage and Rotordynamic Effects of Pocket Damper Seals and See-Through Labyrinth Seals. Texas A&M University, College Station.
[10]  Childs, D.W. and Scharrer, J. (1988) Theory versus Experiment for the Rotordynamic Coefficient of Labyrinth Gas Seals: Part II—A Comparison to Experiment. Journal of Vibration, Acoustics, Stress and Reliability in Design, 110, 281-287.
https://doi.org/10.1115/1.3269514
[11]  Esser, D. and Kazakia, J. Y., 1995 Air Flow in Cavities of Labyrinth Seals. International Journal of Engineering Science, 33, 2309-2326.
https://doi.org/10.1016/0020-7225(95)00072-6
[12]  Vennard, J.K. and Street, R.L. (1982) Elementary Fluid Mechanics. John Wiley& Sons, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133