全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非传统稳定同位素之铁同位素的地球化学研究进展
Progress in Geochemistry of Non-Traditional Stable Isotope—Iron Isotope

DOI: 10.12677/AG.2020.1010089, PP. 907-919

Keywords: 铁同位素,地球化学,测试方法,分馏,应用
Iron Isotope
, Geochemistry, Testing Method, Fractionation, Application

Full-Text   Cite this paper   Add to My Lib

Abstract:

经历了几十年的变化,同位素地球化学已然成为了地球化学的重要组成部分,并在解决跨越地球科学整个领域的各种地球科学问题当中起到了很大的作用。铁是地球上丰度最高的变价金属元素,也是不可或缺的成矿元素,稳定铁同位素地球化学的研究是一个比较前沿的方向,铁作为非传统稳定同位素,从稳定同位素的方向研究出了一系列铁地球化学方法。目前,铁同位素地球化学已广泛应用于行星探测、矿物示踪、深氧循环、表生过程和大洋中脊玄武岩演化等方面。目前,如何将铁同位素与其他同位素结合起来,应用于行星地质学、矿物示踪等领域还有待进一步研究。本文将主要从铁同位素测定方法的变迁、铁同位素分馏的不同过程以及铁同位素的研究及应用做出详细的论述。
After decades of changes, isotope geochemistry has become an important part of geochemistry, and has played an important role in solving various geoscience problems across the whole field of geoscience. Iron is the most abundant variable valence metal element on the earth, and also an indispensable metallogenic element. The study of stable iron isotope geochemistry is a relatively advanced direction. With iron as a non-traditional stable isotope, a series of iron geochemical methods have been developed from the direction of stable isotope. At present, iron isotope geochemistry has been applied in planetary exploration, mineral tracing, deep oxygen cycle, supergene process and the evolution of mid ocean ridge basalt. At present, how to combine iron isotope with other isotopes and apply it to planetary geology, mineral tracing and other fields remains to be further studied. In this paper, the change of iron isotope determination method, the different process of iron isotope fractionation and the research and application of iron isotope are discussed in detail.

References

[1]  Dauphas, N., John, S.G., Rouxel, O., et al. (2017) Iron Isotope Systematics. Reviews in Mineralogy and Geochemistry, 82, 416-421.
https://doi.org/10.2138/rmg.2017.82.11
[2]  Johnson, C., Beard, B., Weyer, S., et al. (2020) Iron Geochemistry: An Isotopic Perspective. Springer, Cham, 32-33, 77.
[3]  朱祥坤, 王跃, 闫斌, 李津, 董爱国, 李志红, 孙剑. 非传统稳定同位素地球化学的创建与发展[J]. 矿物岩石地球化学通报, 2013, 32(6): 658-664.
[4]  朱祥坤, 李志红, 唐索寒, 李延河. 早期前寒武纪硫铁矿矿床Fe同位素特征及其地质意义——以山东石河庄和河北大川为例[J]. 岩石矿物学杂志, 2008, 27(5): 429-434.
[5]  何永胜, 胡东平, 朱传卫. 地球科学中铁同位素研究进展[J]. 地学前缘, 2015, 22(5): 64-65.
[6]  Catling, D.C. and Claire, M.W. (2005) How Earth’s Atmosphere Evolved to an Oxic State: A Status Report. Earth and Planetary Science Letters, 237, 1-20.
https://doi.org/10.1016/j.epsl.2005.06.013
[7]  闫斌, 朱祥坤, 唐索寒, 朱茂炎. 广西新元古代BIF的铁同位素特征及其地质意义[J]. 地质学报, 2010, 84(7): 1080-1086.
[8]  王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3647-3651.
[9]  孙剑, 朱祥坤. 表生过程中铁的同位素地球化学[J]. 地质论评, 2015, 61(6): 1378-1379.
[10]  Beard, B.L., Johnson, C.M., Skulan, J.L., et al. (2003) Application of Fe Isotopes to Tracing the Geochemical and Biological Cycling of Fe. Chemical Geology, 195, 87-117.
https://doi.org/10.1016/S0009-2541(02)00390-X
[11]  Beard, B.L., Johnson, C.M., Cox, L., et al. (1999) Iron Isotope Biosignatures. Science, 285, 1889-1892.
https://doi.org/10.1126/science.285.5435.1889
[12]  Balci, N., Bullen, T.D., Witte-Lien, K., et al. (2006) Iron Isotope Fractionation during Microbially Stimulated Fe(II) Oxidation and Fe(III) Precipitation. Geochimica Acta, 70, 622-639.
https://doi.org/10.1016/j.gca.2005.09.025
[13]  Anbar, A., Roe, J.E., Barling, J., et al. (2000) Nonbiological Fractionation of Iron Isotopes. Science, 288, 126-128.
https://doi.org/10.1126/science.288.5463.126
[14]  Craddock, P.R. and Dauphas, N. (2011) Iron and Carbon Isotope Evidence for Microbial Iron Respiration throughout the Archean. Earth and Planetary Science Letters, 303, 121-132.
https://doi.org/10.1016/j.epsl.2010.12.045
[15]  Heimann, A., Johnson, C.M., Beard, B.L., et al. (2010) Fe, C, and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5 Ga Marine Environments. Earth and Planetary Science Letters, 294, 8-18.
https://doi.org/10.1016/j.epsl.2010.02.015
[16]  Chen, S., et al. (2019) Iron Isotope Fractionation during Mid-Ocean Ridge Basalt (MORB) Evolution: Evidence from Lavas on the East Pacific Rise at 10?30’N and Its Implications. Geochimica et Cosmochimica Acta, 267, 227-239.
https://doi.org/10.1016/j.gca.2019.09.031
[17]  Matthew, L.M., Gleeson, S.A., et al. (2020) Novel Insights from Fe-Isotopes into the Lithological Heterogeneity of Ocean Island Basalts and Plume-Influenced MORBs. Earth and Planetary Science Letters, 535, 1-12.
https://doi.org/10.1016/j.epsl.2020.116114
[18]  He, Y.S., et al. (2019) A Nephelinitic Component with Unusual δ56Fe in Cenozoic Basalts from Eastern China and Its Implications for Deep Oxygen Cycle. Earth and Planetary Science Letters, 512, 175-183.
https://doi.org/10.1016/j.epsl.2019.02.009
[19]  Nebel, O., et al. (2019) Reconciling Petrological and Isotopic Mixing Mechanisms in the Pitcairn Mantle Plume Using Stable Fe Isotopes. Earth and Planetary Science Letters, 521, 60-67.
https://doi.org/10.1016/j.epsl.2019.05.037

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133