全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

坡莫合金纳米环微磁学特性研究
Micromagnetic Properties of Permalloy Nanorings

DOI: 10.12677/CMP.2020.94007, PP. 59-64

Keywords: MuMax3,坡莫合金,磁性纳米环,磁性隧道结
MuMax3
, Permalloy, Magnetic Nanorings, Magnetic Tunnel Junction

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于微磁学软件MuMax3,我们研究了外磁场下不同几何形状的磁性纳米环(Ni80Fe20)的磁化翻转过程,除了预期的洋葱态和漩涡磁化状态外,在磁化过程中还观察到其它亚稳态。通过磁矩翻转相图和能量密度关系,分析了不同磁化状态的形成和跃迁,以及磁矩翻转过程中畴壁的传播和湮灭。我们进一步研究了极化电流驱动Ni80Fe20/Cu/Ni80Fe20磁性隧道结中磁矩翻转的过程,研究发现,纳米环隧道结磁矩翻转的电流密度为3.4 × 107 A/cm2,临界电流密度大小为传统隧道结的0.63倍,两者的磁矩翻转时间大致相同,约为1000 ps。
Based on the micromagnetic software MuMax3, we studied the magnetization reversal process of different geometric shapes of magnetic nanorings (Ni80Fe20) in an external magnetic field. In addition to the expected onion state and vortex magnetization state, other metastable states were observed in the magnetization process. The formation and transition of different magnetization states, as well as the propagation and annihilation of domain walls in the process of magnetic moment reversal are analyzed through the phase diagram and energy density relationship. Furthermore, we studied the process of magnetic moment reversal in Ni80Fe20/Cu/Ni80Fe20 magnetic tunnel junctions driven by polarization current. The results show that the current density of magnetic moment reversal in nanoring tunnel junctions is 3.4 × 107 A/cm2, and the critical current density is 0.63 times of that in traditional tunnel junctions. The time of magnetic moment reversal is about 1000 ps.

References

[1]  Casta, O., Frandsen, C., et al. (2003) Metastable States in Magnetic Nanorings. Physical Review B, 67, Article ID: 184425.
https://doi.org/10.1103/PhysRevB.67.184425
[2]  Ross, C.A., Farhoud, M., Hwang, M., et al. (2001) Micro-magnetic Behavior of Conical Ferromagnetic Particles. Journal of Applied Physics, 89, 1310-1319.
https://doi.org/10.1063/1.1331656
[3]  Giesen, F., Podbielski, J., Botters, B., et al. (2007) Vortex Circulation Control in Large Arrays of Asymmetric Magnetic Rings. Physical Review B, 75, Article ID: 184428.
https://doi.org/10.1103/PhysRevB.75.184428
[4]  Landeros, P., Escrig, J., Altbir, D., et al. (2006) Stability of Magnetic Configurations in Nanorings. Journal of Applied Physics, 100, Article ID: 044311.
https://doi.org/10.1063/1.2218997
[5]  Benatmane, N., Scholz, W. and Clinton, W. (2007) Magnetic Configura-tions and Phase Diagrams of Sub-100-nm NiFe Nanorings. IEEE Transactions on Magnetics, 43, 2884-2886.
https://doi.org/10.1109/TMAG.2007.892867
[6]  Oreci, E. (2018) Installing Mumax 3.9.1 and Gnuplot 5.2 in Windows 10 Step by Step. Reserachgate.
[7]  Khvalkovskiy, V., Apalkov, D., Watts, S., et al. (2013) Basic Principles of STT-MRAM Cell Operation in Memory Arrays. Journal of Physics D: Applied Physics, 46, Article ID: 074001.
https://doi.org/10.1088/0022-3727/46/7/074001
[8]  Wang, L., Alzate, J.G. and Khalili, A.P. (2013) Low-Power Non-Volatile Spintronic Memory: STT-RAM and Beyond. Journal of Physics D: Applied Physics, 46, Article ID: 074003.
https://doi.org/10.1088/0022-3727/46/7/074003
[9]  Yamada, K., Kasai, S., Nakatani, Y., et al. (2007) Electrical Switching of the Vortex Core in a Magnetic Disk. Nature Materials, 6, 270-273.
https://doi.org/10.1038/nmat1867
[10]  Xiao, Q.F., Rudge, J., Choi, B.C., et al. (2006) Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks. Applied Physics Letters, 89, Article ID: 262507.
https://doi.org/10.1063/1.2424673

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133