全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于生成对抗和卷积神经网络的蛋白质二级结构预测
Protein Secondary Structure Prediction Based on Generative Confrontation and Convolutional Neural Network

DOI: 10.12677/HJCB.2020.104006, PP. 49-56

Keywords: 生物信息学,生成对抗网络,卷积神经网络,蛋白质二级结构预测
Bioinformatics
, Generative Adversarial Network, Convolutional Neural Network, Protein Secondary Structure Prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

在生物信息学领域,对于蛋白质二级结构预测是一项具有挑战性的任务,对于确定蛋白质的结构和功能有着极其重要的意义。本文融合了生成对抗网络和卷积神经网络模型进行蛋白质二级结构预测,首先利用生成对抗网络提取蛋白质特征,其次将生成对抗网络提取的特征结合PSSM矩阵作为卷积神经网络的输入,得到预测结果。在测试集CASP9,CASP10,CASP11,CASP12,CB513和PDB25获得了87.06%,87.24%,87.31%,87.39%,88.13%和88.93%,比单独使用卷积神经网络提高了3.88%,4.6%,7.97%,5.85%,5.78%,4.25%。实验结果表明,生成对抗网络特征提取能力是非常显著的。
In the field of bioinformatics, the prediction of protein secondary structure is a challenging task, and it is extremely important for determining the structure and function of proteins. In this paper, the generation of adversarial networks and convolutional neural network models are combined for protein secondary structure prediction. First, the anti-network is generated to extract protein fea-tures. Secondly, the extracted features of the anti-network are combined with the PSSM matrix as the input of the convolutional neural network to obtain the prediction results. In the test set CASP9, CASP10, CASP11, CASP12, CB513 and PDB25 obtained 87.06%, 87.24%, 87.31%, 87.39%, 88.13% and 88.93%, which is 3.88%, 4.6%, 7.97%, 5.85%, 5.78%, 4.25% higher than the convolutional neural network alone. The experimental results show that the feature extraction ability of generat-ing adversarial networks is very significant.

References

[1]  Chou, K.C. (2005) Progress in Protein Structural Class Prediction and Its Impact to Bioinformatics and Proteomics. Current Protein & Peptide Science, 6, 423-436.
https://doi.org/10.2174/138920305774329368
[2]  Costantini, S. and Facchiano, A.M. (2009) Prediction of the Protein Structural Class by Specific Peptide Frequencies. Biochimie, 91, 226-229.
https://doi.org/10.1016/j.biochi.2008.09.005
[3]  Yang, Y., Gao, J., Wang, J., Heffernan, R., Hanson, J., Paliwal, K. and Zhou, Y. (2018) Sixty-Five Years of the Long March in Protein Secondary Structure Prediction: The Fi-nal Stretch? Briefings in Bioinformatics, 19, 482-494.
[4]  Hu, H., Pan, Y., Harrison, R., et al. (2004) Improved Protein Secondary Structure Prediction Using Support Vector Machine with a New Encoding Scheme and an Advanced Tertiary Classifier. IEEE Transactions on Nanobioscience, 3, 265.
https://doi.org/10.1109/TNB.2004.837906
[5]  Wang, Y., Cheng, J., Liu, Y., et al. (2016) Prediction of Protein Secondary Structure Using Support Vector Machine with PSSM Profiles. Information Technology, Networking, Electronic & Automation Control Conference, Chongqing, 20-22 May 2016.
https://doi.org/10.1109/ITNEC.2016.7560411
[6]  Zheng, X., Li, C. and Wang, J. (2010) An Infor-mation-Theoretic Approach to the Prediction of Protein Structural Class. Journal of Computational Chemistry, 31, 1201-1206.
[7]  Robles, V., Larra?aga, P., Pe?a, J., et al. (2004) Bayesian Network Multi-Classifiers for Protein Sec-ondary Structure Prediction. Artificial Intelligence in Medicine, 31, 117-136.
https://doi.org/10.1016/j.artmed.2004.01.009
[8]  Liu, Y. and Cheng, J. (2016) Protein Secondary Structure Pre-diction Based on Wavelets and 2D Convolutional Neural Network. International Conference on Computational Systems Biology & Bioinformatics, 53-57.
https://doi.org/10.1145/3029375.3029382
[9]  Pollastri, G., Przybylski, D., Rost, B., et al. (2002) Improving the Prediction of Protein Secondary Structure in Three and Eight Classes Using Recurrent Neural Networks and Profiles. Proteins, 47, 228-235.
https://doi.org/10.1002/prot.10082
[10]  Heffernan, R., Yang, Y., Paliwal, K., et al. (2017) Capturing Non-Local Interactions by Long Short Term Memory Bidirectional Recurrent Neural Networks for Improving Prediction of Protein Secondary Structure, Backbone Angles, Contact Numbers, and Solvent Accessibility. Bioinformatics, 33, 2842-2849.
https://doi.org/10.1093/bioinformatics/btx218
[11]  Hanson, J., Paliwal, K., Litfin, T., et al. (2018) Improving Pre-diction of Protein Secondary Structure, Backbone Angles, Solvent Accessibility, and Contact Numbers by Using Pre-dicted Contact Maps and an Ensemble of Recurrent and Residual Convolutional Neural Networks. Bioinformatics, 35, 2403-2410.
https://doi.org/10.1093/bioinformatics/bty1006
[12]  Ma, Y., Liu, Y. and Cheng, J. (2018) Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method. Scientific Reports, 8, Arti-cle No. 9856.
https://doi.org/10.1038/s41598-018-28084-8
[13]  Chao, F., Yi, S. and Dong, X. (2018) MUFOLD-SS: New Deep Inception-inside-Inception Networks for Protein Secondary Structure Prediction. Proteins: Structure, Function, and Bioinformatics, 86, 592-598.
https://doi.org/10.1002/prot.25487
[14]  陈人和, 赖振意, 钱育蓉. 改进的生成对抗网络图像去噪算法[J/OL]. 计算机工程与应用, 1-8. https://kns.cnki.net/kcms/detail/11.2127.TP.20200529.1705.020.html, 2020-11-26.
[15]  秦月红, 王敏. 基于生成对抗网络的跨视角步态特征提取[J]. 计算机系统应用, 2020, 29(1): 164-170.
[16]  Jones, D.T. (1999) Protein Secondary Structure Prediction Based on Position-Specific Scoring Matrices. Journal of Molecular Biology, 292, 195-202.
https://doi.org/10.1006/jmbi.1999.3091
[17]  Kabsch, W. and Sander, C. (2010) Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers, 22, 2577-2637.
https://doi.org/10.1002/bip.360221211
[18]  Fox, N., Brenner, S. and Chandonia, J. (2014) SCOPe: Structural Classification of Proteins-Extended, Integrating SCOP and ASTRAL Data and Classification of New Structures. Nucleic Acids Research, 42, 304-309.
https://doi.org/10.1093/nar/gkt1240
[19]  Wang, G. and Dunbrack, R. (2005) PISCES: Recent Improvements to a PDB Sequence Culling Server. Nucleic Acids Research, 33, W94-W98.
https://doi.org/10.1093/nar/gki402
[20]  Moult, J., Fidelis, K., Kryshtafovych, A., et al. (2011) Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round IX. Proteins, 79, 1-5.
https://doi.org/10.1002/prot.23200
[21]  Moult, J., Fidelis, K., Kryshtafovych, A., et al. (2014) Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round X. Proteins: Structure, Function, and Bioinformatics, 82, 1-6.
https://doi.org/10.1002/prot.24452
[22]  Moult, J., Fidelis, K., Kryshtafovych, A., et al. (2012) Critical As-sessment of Methods of Protein Structure Prediction (CASP)—Round X. Proteins: Structure, Function, and Bioinfor-matics.
[23]  Cuff, J., Barton, G., et al. (1999) Evaluation and Improvement of Multiple Sequence Methods for Protein Secondary Structure Prediction. Proteins: Structure, Function and Genetics, 34, 508-519.
https://doi.org/10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
[24]  Kedarisetti, K., Kurgan, L., Dick, S., et al. (2006) Classifier Ensembles for Protein Structural Class Prediction with Varying Homology. Biochemical and Biophysical Research Communications, 348, 981-988.
https://doi.org/10.1016/j.bbrc.2006.07.141
[25]  Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al. (2014) Gen-erative Adversarial Nets. In: International Conference on Neural Information Processing Systems, MIT Press, Cam-bridge, 2672-2680.
[26]  Chartrand, G., Cheng, P.M., Vorontsov, E., et al. (2017) Deep Learning: A Primer for Radiol-ogists. Radiographics, 37, 2113-2131.
https://doi.org/10.1148/rg.2017170077
[27]  卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
[28]  Bishop, C. (2006) Pattern Recognition and Machine Learning. Springer, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133