全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Re-Evaluation of Kombat-Style Mineralization and Implications for Exploration in the Otavi Mountainland, Namibia

DOI: 10.4236/ojg.2020.1011054, PP. 1119-1152

Keywords: MVT-Type Deposit, Hydrothermal, Syn-Sedimentary, Genetic Model, Exploration

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study re-evaluates the characteristics of Cu-Pb-Ag and Fe-Mn ore mineralization of the Kombat Mine and Gross Otavi Mine based on field geology, fluid inclusions, petrology, mineralogy, and geochemistry. This is to determine the genetic relationship between Fe-Mn and Cu-Pb-Ag mineralization. The study has established that the Cu-Pb-Ag ore at the Kombat Mine can be classified as a variant of MVT-type deposit, whereas the Fe-Mn ore can be classified as a stratiform-syn-sedimentary deposit. The formation of the MVT-type deposit is associated with a hydrothermal fluid system with a mean temperature of 183°C and mean salinity of 12.85 wt. % NaCl equivalent. The syn-sedimentary Fe-Mn ore, which is largely associated with calc-silicate lithologies, consists mainly of magnetite and hematite with minor pyrite, hausmannite and jacobsite, and was deposited by diagenetic and mixed diagenetic-hydrogenetic processes under changing oxic and anoxic conditions within the sedimentary basin. Acceptable geochemical exploration indicators of the existing mineralization include anomalous values above 0.5% Cu, 0.2% S; 0.05% Pb; 0.04% As; 0.01% Zn; V, W, Mo, and Ag are 0.002%. Mineralogical indicators include chalcopyrite, bornite, covellite and galena with minor chalcocite, sphalerite, and tennantite for the Cu-Pb MVT-type ores at Kombat Mine.

References

[1]  European Discovery, Development, and Early Exploitation (2015).
http://www.tsumeb.com/en/history/european-discovery/
[2]  Schneider, G.I.C. and Seeger, K.G. (2012) The Mineral Resources File, Geological Survey of Namibia.
[3]  Killick, A.M. (1986) A Review of the Economic Geology of Northern South West Africa/Namibia. In: Anhaeusser, C.R. and Maske, S., Eds., Mineral Deposits of Southern Africa 2, Geological Society of South Africa, Johannesburg, 1709-1717.
[4]  Cairncross, B. (1997) The Otavi Mountain Land Cu-Pb-Zn-V Deposits, Namibia. Mineralogical Record, 28, 109-130.
[5]  Puritch, E., Routledge, R., Sutcliffe, R., Burga, D. and Hayden, A. (2014) NI-43-101 & 43-101F1 Technical Report and Resource Estimate on the Kombat Copper Project, Grootfontein District, Otjozondjupa Region, Namibia Latitude 19°42’35’’S Longitude 17°42’09’’E UTM Zone 33K 783301 m E 7818395Ms for Kombat Copper Inc. P&E Mining Consultants Inc., Toronto.
[6]  Trigon Metals (2020) Resource Statement Update September 28, 2020.
https://www.trigonmetals.com/2020/09/28/
[7]  Kotzé, W.H. (2019) Kombat Mining Complex and Otavi Valley Mineral Deposits and Occurrences. Unpublished Report, Trigon Metals Inc., Toronto.
[8]  Deane, J. (1995) The Structural Evolution of the Kombat Deposits, Otavi Mountainland, Namibia. Communications of the Geological Survey of Namibia, 10, 99-107.
[9]  Pirajno, E. and Joubert, B.D. (1993) An Overview of Carbonate-Hosted Mineral Deposits in the Otavi Mountain Land, Namibia: Implications for Ore Genesis. Journal of African Earth Sciences, 16, 265-272.
https://doi.org/10.1016/0899-5362(93)90048-U
[10]  Hoffman, P.F., Halverson, G.P. and Schrag, D.P. (1998) A Neoproterozoic Snowball Earth. Journal of Science, 281, 1342-1346.
https://doi.org/10.1126/science.281.5381.1342
[11]  Hoal, K.O., Hoal, B.G., Griffin, W.L. and Armstrong, R.A. (2000) Characterization of the Age and Nature of the Lithosphere in the Tsumkwe Region, Namibia. Communications of the Geological Survey of Namibia, 12, 23-30.
[12]  Minz, F. (2008) The Kombat Ore Deposit, Otavi Mountain Land (Northern Namibia). Advanced Seminars, Institute for Geology, Technical University Berg Academy, Freiberg.
[13]  Miller, R. (2008) The Geology of Namibia. Volume 1, Ministry of Mines and Energy, Geological Survey, Windhoek, 690 p.
[14]  Laukamp, C. (2006) Structural and Fluid System Evolution in the Otavi Mountain Land (Namibia) and Its Significance for the Genesis of Sulfide and Nonsulfide Mineralization. PhD Thesis, Universitat, Heidelberg.
[15]  Trompette, R. (1997) Neoproterozoic (c. 600 Ma) Aggregation of Western Gondwana: A Tentative Scenario. Precambrian Research, 82, 101-112.
https://doi.org/10.1016/S0301-9268(96)00045-9
[16]  Melcher, F., Lodziak, J. and Vetter, U. (2004) Sulfide Mineralization in the Otavi Mountain Land, Namibia. BGR, Hannover.
[17]  Kamona, A. and Günzel, A. (2007) Stratigraphy and Base Metal Mineralization in the Otavi Mountain Land, Northern Namibia—A Review and Regional Interpretation. Gondwana Research, 3, 396-413.
https://doi.org/10.1016/j.gr.2006.04.014
[18]  Goscombe, B., Gray D., Armstrong, R., Foster, A.D. and Vogl, J. (2005) Event Geochronology of the Pan-African Kaoko Belt, Namibia. Precambrian Research, 140, 103.e1-103.e41.
https://doi.org/10.1016/j.precamres.2005.07.003
[19]  Raith, M., Raase, P. and Reinhardt, J. (2012) Guide to Thin Section Microscopy. 2nd Edition, Roidestrabe, Steendiek, Durban, Open Access Publication e-Book.
[20]  Shepherd, T.J., Rankin, A.H. and Alderton, D.H. (1985) A Practical Guide to Fluid Inclusion Studies. Blackie, New York, Glasgow.
[21]  Volesky, J., Leybourne, M., Stern, R., Peter, J.M., Layton-Matthews, D., Rice, S. and Johnson, P. (2017) Metavolcanic Host Rocks, Mineralization, and Gossans of the Shaib al Tair and Rabathan Volcanogenic Massive Sulfide Deposits of the WadiBidah Mineral District, Saudi Arabia. International Geology Review, 59, 1975-2002.
https://doi.org/10.1080/00206814.2017.1307789
[22]  Bailie, R. and Gutzmer, J. (2011) Age and Primary Architecture of the Copperton Zn-Cu VMS Deposit, Northern Cape Province, South Africa. Ore Geology Reviews, 39, 164-179.
https://doi.org/10.1016/j.oregeorev.2011.02.001
[23]  Franklin, J.M., Lydon, J.W. and Sangster, D.F. (1981) Volcanic-Associated Massive Sulfide Deposits. In: Skinner, B.J., Ed., Economic Geology 75th Anniversary Volume, Society of Economic Geologists, Littleton, 485-627.
[24]  Mousivanda, F., Rastadb, E., Peterc, J.M. and Maghfourib, S. (2018) Metallogeny of Volcanogenic Massive Sulfide Deposits of Iran. Ore Geology Reviews, 95, 974-1007.
https://doi.org/10.1016/j.oregeorev.2018.01.011
[25]  Pearson Product-Moment Correlation (2018).
https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php
[26]  Lechte, M.A., Wallace, M.W. and Hoffmann, K. (2019) Glacio-Marine Iron Formation Deposition in a c. 700 Ma Glaciated Margin: Insights from the Chuos Formation, Namibia. School of Earth Sciences, University of Melbourne, Parkville.
https://doi.org/10.1144/SP475.2
[27]  Large, R.R. (1992) Australian Volcanic-Hosted Massive Sulfide Deposits: Features, Styles, and Genetic Models. Economic Geology, 87, 471-510.
https://doi.org/10.2113/gsecongeo.87.3.469
[28]  Potter, R.W. (1977) Pressure Corrections for Fluid-Inclusions Homogenization Temperatures Based on the Volumetric Properties of the System NaCI-H20. Journal of. Research U.S. Geological Survey, 5, 603-607.
[29]  Bussell, M.A., Alpers, C.N., Petersen, U., Shepherd, T.J., Bermudez, C. and Baxter, A.N. (1990) The Ag-Mn-Pb-Zn Vein, Replacement, and Skarn Deposits of Uchucchacua, Peru: Studies of Structure, Mineralogy, Metal Zoning, Sr Isotopes, and Fluid Inclusions. Economic Geology, 85, 1348-1383.
https://doi.org/10.2113/gsecongeo.85.7.1348
[30]  Paradis, S., Hannigan, P. and Dewing, K. (2007) Mississippi Valley-Type Lead-Zinc Deposits. In: Goodfellow, W.D., Ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, St. John’s, Special Publication No. 5, 185-203.
[31]  McQueen, K.G. (2015) Ore Deposit Types and Their Primary Expressions.
https://www.researchgate.net/publication/267839370
[32]  Baniak, G.M., Gingras, M.K., Burns, B.A. and Pemberton, S.G. (2015) Petrophysical Characterization of Bioturbated Sandstone Reservoir Facies in the Upper Jurassic Ula Formation, Norwegian North Sea, Europe. Journal of Sedimentary Research, 85, 62-81.
https://doi.org/10.2110/jsr.2015.05
[33]  Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F. and Saltus, R.W. (2010) A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores, Chap. A of Mineral Deposit Models for Resource Assessment. U.S. Geological Survey Scientific Investigations Report 2010-5070-A, 52.
https://doi.org/10.3133/sir20105070A
[34]  Leach, D.L. and Sangster, D. (1993) Mississippi Valley-Type Lead-Zinc Deposits. In: Kirkham, R.V., Sinclair, W.D., Thorpe, R.I. and Duke, J.M., Eds., Mineral Deposit Modeling: Geological Association of Canada Special Paper 40, 289-314.
[35]  Skinner, B. (1997) Hydrothermal Mineral Deposits: What We Do and Don’t Know. 3rd Edition, John Wiley and Sons, New York.
[36]  Giordano, T.H. and Barnes, H.L. (1981) Lead Transport in Mississippi Valley-Type Oresolutions. Economic Geology, 76, 2200-2211.
https://doi.org/10.2113/gsecongeo.76.8.2200
[37]  Qiu, W.J., Zhou, M. and Liu, Z. (2018) Late Paleozoic SEDEX Deposits in South China Formed in a Carbonate Platform at the Northern Margin of Gondwana. Journal of Asian Earth Sciences, 156, 41-58.
https://doi.org/10.1016/j.jseaes.2018.01.006
[38]  Calvert, S.E. and Piper, D.Z. (1984) Geochemistry of Ferromanganese Nodules from DOMES Site A, Northern Equatorial Pacific: Multiple Diagenetic Metal Source in the Deep Sea. Geochimica et Cosmochimica Acta, 48, 1913-1928.
https://doi.org/10.1016/0016-7037(84)90374-0
[39]  Schultz, H.D. (2006) Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Phase. In: Schultz, H.D. and Zabel, M., Eds., Marine Geochemistry, 2nd Edition, Springer, Heidelberg, 75-77.
[40]  Hao, D. and Jun, W. (2018) Applied Geophysics: Electrical and Electromagnetic Methods. Unpublished Lecture Series. Windhoek.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133