全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

End-Cretaceous Quartz Arenite Formation in an Estuarian Environment under Brine Influence, N. Germany; Linked to both Deccan Volcanism and Chicxulub Impact Degassing during Climate Change

DOI: 10.4236/ojg.2020.1011053, PP. 1091-1118

Keywords: Indirect Effects, Diagenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Maastrichtian off-shore carbonate sediments and transitional estuarian quartz arenite (primarily subarkosic/arkosic) deposited in N Germany, underwent indirect effects by end-Cretaceous plume volcanism (Caribbean Arc/Antilles, Amirante Arc/Seychelles, Deccan Traps) and by the Chicxulub impact during climate change. In addition, brines of local salt structures had increasing influence on pore water chemistry of siliciclastics deposited in rim synclines and sub-rosion bowls during the transition from salt pillow state (Upper Campanian/Maastrichtian) to diapirism since the KPgB (66.043 Ma) until end-Paleocene. As main drivers degassing (CO2, SO2 et al.), temperature rise, acid rain/metal toxicity of both volcanic and impact origin caused kill effects by acidification (pH-drop) of sea water resp. dissolution processes on land initiated by complex acid mixtures onto both marine and continental sediments; all in all, leaving a remarkable reduction of the clastics’ primary mineral content, accompanied by kaolinite in-situ neoformation (\"\"quartz, kaolinite). Furthermore, driving effects even controlled lithofacies and sequence-analytical patterns (LST, TST, HST). Around the Lower/Upper Maastrichtian B. (MFS) radiolarian ooze was deposited across flat estuarian mouth channels during an ingression (tsunami), originally as soft pebbles, then diagenetically slightly consolidated. Surprisingly, the radiolarian skeletons normally composed of opal or celestite, were identified as β-quartz and elementary silicon. The latter hitherto unknown in nature, demands extreme reducing conditions (in Industries: by elementary A1, Mg, C) in pore water as possibly given by brines (see Atlantis II-Deep, Red Sea). The top portions of the uppermost Maastrichtian deposits of N Germany were eroded by the KPgB-convulsive events. However, recent publications (i.e. from Seymour Island, Antarctica) make evident that Deccan volcanism played obviously a prime role versus the Chicxulub impact during reversal magnetization (Chron 29 R). Thus, there exists a high probability that plume volcanism had important influence on the quartz arenite in-situ formation by degassing and related acid in combination with brines in trap position of the ascending salt diapirs. Accordingly, Price’s concept (2001) major impacting may cause plate motion, has to be modified towards the version plume mechanism and may have the same or even stronger effect, thereby relating to recent

References

[1]  Gold, Th. (2001) Biosphaere der heissen Tiefe. Ed. Steinherz, Wiesbaden. 2 Aufl., 256 p.
[2]  Stoffler, D. (2002) Bedrohung aus dem Weltall–Asteroiden und Kometen. An den Fronten der Forschung. Kosmos-Erde-Leben. Verhandlungen der Gesellschaft Deutscher Naturforscher und Arzte, 122, 81-97.
[3]  Reimold, W.U. (2007) Revolutions in the Earth Sciences: Continental Drift, Impact and other Catastrophes. South African Journal of Geology, 110, 1-46.
https://doi.org/10.2113/gssajg.110.1.1
[4]  Clifton, H.E., Ed. (1988) Sedimentologic Consequences of Convulsive Geologic Events. Geological Society of America, Special Papers, 229, 157 p.
https://doi.org/10.1130/SPE229-p1
[5]  Tollmann, A. and Tollmann, E. (1993) Und die Sintflut gab es doch. Vom Mythos zur historischen Wahrheit. München, 560 p.
[6]  Crutzen, P.J. (1987) Acid Rain at the K/T Boundary. Nature, 330, 108-109.
https://doi.org/10.1038/330108a0
[7]  Zahnle, K.J. (1990) Atmospheric Chemistry by Large Impacts. Global Catastrophes in Earth History, 247, 271-288.
https://doi.org/10.1130/SPE247-p271
[8]  Clube, V. and Napier, B. (1990) The Cosmic Winter. Blackwell, Oxford.
[9]  Koch, H.P. (2000) The Diluvian Impact: The Great Flood Catastrophe 10,000 Years Ago as the Consequence of a Comet's Impact. Peter Lang Pub Incorporated, Europ. Verlag der Wissensch., Wien, New York, 27/4 p.
[10]  Mc Lean, D.M. (1985) Mantle Degassing. Unification of the Trans-K/T Geobiological Record. In: Hecht, N.K., Wallace, B. and Prance, G.T., Eds., Evolutionary Biology, Springer, Boston, 287-313.
https://doi.org/10.1007/978-1-4615-6980-0_6
[11]  Self, S., Widdowson, M., Thordarson, T. and Jay, A.E. (2006) Volatile Fluxes during Flood Basalt Eruptions and Potential Effects on the Global Environment: A Deccan Perspective. Earth and Planetary Science Letters, 248, 518-532.
https://doi.org/10.1016/j.epsl.2006.05.041
[12]  Self, S., Schmidt, A. and Mather, T.A. (2014) Emplacement Characteristics, time Scales, and Volcanic Gas Release Rates of Continental Flood Basalt Eruptions on Earth. Geological Society of America, Special Papers, 505, 319-337.
https://doi.org/10.1130/2014.2505(16)
[13]  Krauskopf, K.B. (1982) Introduction to Geochemistry. McGraw-Hill International Series, London, 617 p.
[14]  Stoffler, D. (1971) Coesite and Stishovite in Shocked Crystalline Rocks. Journal of Geophysical Research, 76, 5474-5488.
https://doi.org/10.1029/JB076i023p05474
[15]  Schneider, W. and Salameh, E. (2012) Did Major Impacts Affect Sedimentologic/Sequence-Analytical Patterns of the Early Palaeozoic Sedimentary Systems of Jordan, Arabian Plate? Open Journal of Geology, 2, 241-252.
https://doi.org/10.4236/ojg.2012.24024
[16]  Schneider, W. and Salameh, E. (2020) Phanerozoic Quartz Arenite Formation and Sequence-Analytical Patterns: Indirectly Relating to Major Impacting and Super Plume Volcanism, Jordan, Arabian Plate. Open Journal of Geology, 10, 13-52.
https://doi.org/10.4236/ojg.2020.101002
[17]  Larson, R.L. (1995) Die Superplume-Episode in der Mittleren Kreidezeit. Spektrum der Wissenschaft, 7, 48-52.
[18]  White, R.W. and Saunders, A.D. (2005) Volcanism, Impact and Mass Extinction: Incredible or Credible Coincidences? Lithos, 79, 299-316.
https://doi.org/10.1016/j.lithos.2004.09.016
[19]  Peterson, S.V., Dutton, A. and Lohman, K.C. (2016) End-Cretaceous Extinction in Antarctica Linked to Both Deccan Volcanism and Meteoritic Impact via Climate Change. Nature Communications, 7, Article No. 12079.
https://doi.org/10.1038/ncomms12079
[20]  Henehan, M.J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, J.R., Planavsky, N.J. and Hull, P.M. (2019) Rapid Ocean Acidification and Protracted Earth System Recovery Followed the End-Cretaceous Chicxulub Impact. PNAS, 116, 22500-22504.
https://doi.org/10.1073/pnas.1905989116
[21]  Price, N.J. (2001) Major Impacts and Plate Tectonics. Routledge, London, 354 p.
https://doi.org/10.1201/9780203165454
[22]  Baldschuhn, R. and Kockel, F. (1996) Geologische Schnitte 1:200000, Strukturübersicht und Lage der Geologischen Schnitte 1:500000. In Baldschuhn, R., Frisch, U. and Kockel, F., Eds., Geotektonischer Atlas von Nordwestdeutschland, Teil 17.7 and 17.8 Bundesanstalt for Geowissenschaften und Rohstoffe (BGR), Hannover.
[23]  Lempp, Ch. and Lerche, I. (2006) Correlation of Stress Directions across the North German Basin: Suprasalt and Subsalt Differences. Zeitschrift der Deutschen Geologischen Gesellschaft, 157, 279-297.
https://doi.org/10.1127/1860-1804/2006/0157-0279
[24]  Kockel, F. (1991) Die Strukturen im Untergrund des Braunschweiger Landes. GeologischesJahrbuch, A, 127, 391-404.
[25]  Schneider, W. (2017) Post-Santone Flosstektonik im Subherzyn, Nordliches Harzvorland. Kurzfassung. Bericht an Bundesgesellschaft für Endlagerung (BGE), Salzgitter, 31 Abb., 21 p. (Unpublished)
[26]  Niebuhr, B and Ernst, G. (1991) Faziesgeschichte und Entwicklungsdynamik von Campan, Maastricht und Eozan in Beienroder Becken Ost-Niedersachsen). Zeitschrift der Deutschen Geologischen Gesellschaft, 142, 351-283.
https://doi.org/10.1127/zdgg/142/1991/251
[27]  Schneider, W. and Salameh, E. (2018) How to Trace out Impact-Triggered Effects Globally Scattered around Formation Boundaries: Case Uhry, North Germany (Eocene/Oligocene Boundary). Open Journal of Geology, 8, 9-32.
https://doi.org/10.4236/ojg.2018.81002
[28]  Stanicke, J. (1979) Geologische Kartierung auf Bl. Süpplingen, (Nr. 3731). Dipl. Kart., TU Braunschweig, M. 1:10.000, 56 p.
[29]  Probst, U. (1980) Kartierung auf Bl. Süpplingen (Nr. 3731), Dipl. Kart., TU Braunschweig, M 1:10.000, 62 p.
[30]  Freiberg, H.-J. (1981) Kartierung auf Bl. Süpplingen (Nr. 3731), Dipl. Kart., TU Braunschweig, M 1:10.000, 62 p.
[31]  Ramme, G. (1982) Sedimentologische Untersuchungen an tertiaren Sanden (Meanwhile Corrected to Upper Maastrichtian) im Bereich des Dorm/Norddeutschland, Dipl.—Thesis, Braunschweig Technical University, 138 p and an Additional Report about “Glass Sand” of the Same Age. (Unpublished)
[32]  Best, G. (1996) Flosstektonik in Norddeutschland: Erste Ergebnisse reflextionsseimischer Untersuchungen an der Salzstruktur “Oberes Allertal”. Zeitschrift der Deutschen Geologischen Gesellschaft, 147, 455-464.
https://doi.org/10.1127/zdgg/147/1997/455
[33]  Best, G. and Zirngast (2002) Die strukturelle Entwicklung der exhumierten Salzstruktur “Oberes Allertal” Bundesanstalt f. Geowissensch. Und Rohstoffe (BGR), Hannover, 110 p.
[34]  für Geologie, L. and Sachsen-Anhalt, B. (2007) Erlauterungen zur Geol. Karte von Sachsen-Anhalt, Bl. Helmstedt (3722), M 1:25000, 2 Aufl., 260 p.
[35]  Niebuhr, B. (2006) Multistratigraphische Gliderung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlüssen und Bohrungen. Zeitschrift der Deutschen Geologischen Gesellschaft, 157, 245-262.
https://doi.org/10.1127/1860-1804/2006/0157-0245
[36]  Wagenbreth, O. and Steiner, W. (1990) Geologische Streifzüge. Landschaft und Erdgeschichte zwischen Kap Arkona und Fichtelgebirge. Deutscher Verlag f. Grundstoffindustrie, Leipzig, 204 p.
[37]  Mattern, F. (1996) The Elbe Zone at Dresden: A Late Paleozoic Pull-Apart Intruded Shear Zone. Zeitschrift der Deutschen Geologischen Gesellschaft, 147, 57-80.
https://doi.org/10.1127/zdgg/147/1996/57
[38]  German Stratigraphic Commission (Ed.) (2002) Stratigraphic Table of Germany, Explanation, 16 p.
[39]  Ogg, J.G., Agterberg, F.P. and Gradstein, F.M. (2004) The Cretaceous Period. In: Gradstein, F.M., Ogg, J.G. and Smith, A.G., Eds., A Geologic Time Scale, Cambridge University Press, Cambridge, 344-383.
https://doi.org/10.1017/CBO9780511536045.020
[40]  Krutzsch, W. (1966) Die Spurenstratigraphische Gliederung der Oberkreide im nordlichen Mitteleuropa. Abhandlung Zentrales Geologisches Institut, 5, 111-137.
[41]  Krutzsch, W. and Prokoph, A. (1992) Die Ablagerungen der oberkretazischen Walbeck F. im oberen Allertalgraben (Stratigraphie, Sedimentologie, Palynologie). Berichte der Naturhistorischen Gesellschaft, Hannover, 134, 117-133.
[42]  Renne, P.R., Deino, A.L., Hilgen, F.J., et al. (2013) Time Scale of Critical Events around the Cretaceous-Paleogene Boundary. Science, 339, 684-687.
https://doi.org/10.1126/science.1230492
[43]  Rietschel, P. and Rohde, K. (2013) Die einzelligen Tiere. 4. Kapitel. In: Grzimek, B., Ed., Grzimek Tierleben. Enzyklopadie des Tierrech, Kinder Verlag, Zürich, 89-137.
[44]  Folk, R.L. and Ward, W.C. (1957) Brazos River Bar [Texas]: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Research, 27, 3-26.
https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
[45]  Miall, D. (1996) The Geology of Fluvial Deposits. Springer-Verlag, Berlin, Heidelberg, New York, 582. Hugendubel Verlag, Kreuzlingen/München, 317.
[46]  Haq, B.U., Hardenbol, J. and Van Eysinga (1987) Geological Time Table. Elsevier, Amsterdam, Wall Chart.
[47]  Schoene, B., Samperton, K.M., Eddy, M.P., et al. (2015) U-Pb Geochronology of the Deccan Traps and Relation to the End-Cretaceous Mass Extinction. Science, 347, 182-184.
https://doi.org/10.1126/science.aaa0118
[48]  Frisch, W. and Meschede, M. (2009) Plattentektonik. Kontinentverschiebung und Gebirgsbildung, 3. Auflage, Primus Verlag, Darmstadt, 196 p.
[49]  Chekaliuk, E.B. (1976) The Thermal Stability of Hydrocarbon Systems in Geothermodynamic Conditions. In: Kropotkin, P.N., Ed., Degasatsia Zemli I, Geotectinica, Moskau Nauka, 267-272.
[50]  Gold, Th. and Soter, St. (1980) The Deep-Earth-Gas Hypothesis. Scientific American, 242, 154-161.
[51]  Gold, T. (1985) The Origin of Natural Gas and Petroleum, and the Prognosis for Future Supplies. Annual Review of Energy, 10, 53-77.
https://doi.org/10.1146/annurev.eg.10.110185.000413
[52]  Hollemann, A.F. (Wiberg, E., Ed.) (1964) Lehrbuch der Anorganischen Chemie, 70. Auflage, Walter de Gruyter & Co., Berlin, 766 p.
https://doi.org/10.1515/9783112312889
[53]  Scholl, M., Backer, H. and Baumann, A. (1974) The Red Sea Geothermal System—New Aspects on their Brines and Associated Sediments. Problems of Ore Deposition. 4th IAGOD Symposium, Varna, V. 1, 303-313.
[54]  Brink, H.-J. (2006) Do the Global Geodynamic Cycles of the Phanerozoic Represent a Feed-Back System of the Earth and is the Moon Involved as an Acting External Force? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 17-40.
https://doi.org/10.1127/1860-1804/2006/0157-0017
[55]  Rampino, M.R. and Heggerty, B.M. (1994) Extraterrestrial Impacts and Mass Extinctions of Life. In: Gehrels, T., Ed., Hazards Due to Comets & Asteroids, University of Arizona Press, Tucson, 827-857.
[56]  Kriener, M. (2017) Dir grosse Beschleunigung. In: Edition de Monde Diplomatique: Warmzeit, Klima, Mensch und Erde. Berlin. No. 20, 109 p. (Source: Steffen Will et al. (2015) The Anthropocene Review, Berlin.)
[57]  Bohme, N., Braun, H. and Breier, F. (2019) Wie wir Menschen wurden. Heyne, München, 335 p.
[58]  Glaubrecht, M. (2019) Das Ende der Evolution. Der Mensch und die Vernichtung der Arten. C Bertelsmann, München, 1071 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133