Impact of Variegated Temperature, CO2 and Relative Humidity on Survival and Development of Beet Armyworm Spodoptera exigua (Hubner) under Controlled Growth Chamber
Climate change will have a noteworthy bearing on survival, development, and population dynamics of insect pests. Therefore, we contemplated the survival and development of beet army worm, Spodoptera exigua under different temperatures, (15°C, 25°C, 35°C, and 45°C), CO2 (350, 550, 750 ppm) and relative humidity (55%, 65%, 75% and 85%) regimes. Maximum larval and pupal weights were recorded in insects reared at 25°C. The growth of S. exigua was faster at 35°C (larval period 7.4 days and pupal period 4.5 days) than at lower temperatures. At 15°C, the larval period was extended for 61.4 days and there was no adult emergence from the pupae till 90 days. The S. exigua hatchling was absent at 45°C. The larval survival ranged from 31.6% - 57.2%, maximum survival was recorded at 25°C, and minimum at 45°C. The maximum (84.27%) and minimum adult emergence were recorded in insects reared at 25°C and 35°C respectively. Maximum fecundity (384.3 eggs/female) and egg viability (51.97%) were recorded in insects reared at 25°C. Larval and pupal periods increased with an increase in CO2 concentration. The highest pupal weights (128.6 mg/larva) were recorded at 550 ppm. The highest larval survival (73.50%) was recorded at 550 ppm and minimum (37.00%) at 750 ppm CO2. Fecundity was the highest in insects reared at 550 ppm CO2 (657.4 eggs/female), and the lowest at 750 ppm. Maximum larval and pupal weights were recorded in insects reared at 75% relative humidity (RH). The growth rate of S. exigua was faster at 85% RH than at lower RH. The larval survival ranged between 40.0% - 58.5%. Maximum adult emergence (88.91%) was recorded in insects reared at 75% RH and minimum at 85% RH. Maximum fecundity (447.6 eggs/female) and the highest egg viability (72.95%) were recorded in insects reared at 75% and 65% RH respectively. Elevated
References
[1]
Adamczyk, J. J., Williams, M. R., Reed, J. T., Hubbard, D. W., & Hardee, D. D. (2003). Spatial and Temporal Occurrence of Beet Armyworm (Lepidoptera: Noctuidae) Moths in Mississippi. Florida Entomologist, 86, 229-232.
https://doi.org/10.1653/0015-4040(2003)086[0229:SATOOB]2.0.CO;2
[2]
Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2002). Metabolic Cold Adaptation in Insects: A Large-Scale Perspective. Functional Ecology, 16, 332-338.
https://doi.org/10.1046/j.1365-2435.2002.00634.x
[3]
Agrell, J., Anderson, P., Oleszek, W., Stochmal, A., & Agrell, C. (2006). Elevated CO2 Levels an Herbivore Damage Alter Host Plant Preferences. Oikos, 112, 63-72.
https://doi.org/10.1111/j.0030-1299.2006.13614.x
[4]
Ahmed, K., Lal, S. S., Morris, H., Khalique, F., & Malik, B. A. (1990). Insect Pest Problems and Recent Approaches to Solving Them on Chickpea in South Asia. In B. J. Walby, & S. D. Hall (Eds.), Chickpea in the Nineties: Proceedings of the 2nd International Workshop on Chickpea Improvement (pp. 165-168). Patancheru: International Crops Research Institute for the Semi Arid Tropics (ICRISAT).
[5]
Arbab, A., Kontodimas, D., & Sahragard, A. (2006). Estimating Development of Aphis pomi (DeGeer) (Homoptera: Aphididae) Using Linear and Nonlinear Models. Environmental Entomology, 35, 1208-1215.
https://doi.org/10.1603/0046-225X(2006)35[1208:EDOAPD]2.0.CO;2
[6]
Armes, N. J., Jadhav, D. R., Bond, G. S., & King, A. B. S. (1992). Insecticide Resistance in Helicoverpa armigera in South India. Journal of Pest Science, 34, 355-364.
https://doi.org/10.1002/ps.2780340409
[7]
Awmack, C. S., & Leather, S. R. (2002). Host Plant Quality and Fecundity in Herbivorous Insects. Annual Review of Entomology, 47, 817-844.
https://doi.org/10.1146/annurev.ento.47.091201.145300
[8]
Bale, J. S., Masters, G. J., Hodkinson, I. D. et al. (2002). Herbivory in Global Climate Change Research: Direct Effects of Rising Temperature on Insect Herbivores. Global Change Biology, 8, 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
[9]
Coviella, C. E., & Trumble, J. T. (1991). Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions. Conservation Biology, 13, 700-712.
https://doi.org/10.1046/j.1523-1739.1999.98267.x
[10]
Dyer, L. A., Richards, L. A., Short, S. A., & Dodson, C. D. (2013). Effects of CO2 and Temperature on Tritrophic Interactions. PLoS ONE, 8, e62528.
https://doi.org/10.1371/journal.pone.0062528
[11]
Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Phylogenetic Grouping, Curvature and Metabolic Scaling in Terrestrial Invertebrates. Ecology Letters, 14, 993-1000.
https://doi.org/10.1111/j.1461-0248.2011.01660.x
[12]
Feng, H. Q., Wu, K. M., Cheng, D. F., & Guo, Y. Y. (2003). Radar Observations of the Autumn Migration of the Beet Armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and Other Moths in Northern China. Bulletin of Entomological Research, 93, 115-124. https://doi.org/10.1079/BER2002221
[13]
Friedenberg, N. A., Sarkar, S., Kouchoukos, N., Billings, R. F., & Ayres, M. P. (2008). Temperature Extremes, Density Dependence, and Southern Pine Beetle (Coleoptera: Curculionidae) Population Dynamics in East Texas. Environmental Entomology, 37, 650-659. https://doi.org/10.1093/ee/37.3.650
[14]
Haettenschweiler, S., & Schafellner, C. (2004). Gypsy Moth Feeding in the Canopy of a CO2-Enriched Mature Forest. Global Change Climate, 10, 1899-1908.
https://doi.org/10.1111/j.1365-2486.2004.00856.x
[15]
Hardev, S. S., Garegg, S. N., Susan, E. W., Ronald, H. G., & Robert, A. G. (2013). Temperature-Dependent Reproductive and Life Table Parameters of Elasopalpus lignosellus (Lepidoptera: Pyralidae) on Sugarcane. Florida Entomologist, 96, 380-390.
https://doi.org/10.1653/024.096.0258
[16]
Hunter, M. D. (2001). Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions. Agricultural and Forest Entomology, 3, 153-159.
https://doi.org/10.1046/j.1461-9555.2001.00108.x
[17]
Jaba, J., Agnihotri, M., & Chakravarty, S. (2017). Screening for Host Plant Resistance to Helicoverpa armigera (Hubner) in Chickpea Using Novel Techniques. Legume Research—An International Journal, 40, 955-958. https://doi.org/10.18805/lr.v0iOF.4478
[18]
Levesque, K. R., Fortin, M., & Mauffette, Y. (2002). Temperature and Food Quality Effects on Growth, Consumption and Post-Ingestive Utilization Efficiencies of the Forest Tent Caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Bulletin of Entomological Research, 92, 127-136. https://doi.org/10.1079/BER2002153
[19]
Li, M., Liu, X. M., Wang, Y., Wang, X. P., Zhou, L. L., & Si, S. Y. (2014). Effect of Relative Humidity on Entomopathogens Infection and Antioxidant Responses of the Beet Armyworm, Spodopteraexigua (Hübner). African Entomology, 22, 651-659.
https://doi.org/10.4001/003.022.0310
[20]
Lindroth, R. L., Kinney, K. K., & Platz, C. L. (1993). Responses of Deciduous Trees to Elevated Atmospheric CO2: Productivity, Phytochemistry, and Insect Performance. Ecology, 74, 763-777. https://doi.org/10.2307/1940804
[21]
Mitchell, E. R. (1979). Migration by S. exigua and S. frugiperda, North American Style (Lepidoptera: Noctuidae). Journal of the Australian Entomological Society, 18, 363-372.
[22]
Murray, P. J., Hatch, D. J., & Cliquet, J. B. (1996). Impact of Insect Root Herbivory on the Growth and Nitrogen and Carbon Contents of White Clover (Trifolium repens) Seedlings. Canadian Journal of Botany, 74, 1591-1595. https://doi.org/10.1139/b96-192
[23]
Prasad, J. V., & Sreedhar, U. (2011). Life Parameters of Tobacco Caterpillar, Spodoptera litura as Influenced by Transgenic (Bt) Cotton Hybrids. Indian Journal of Entomology, 73, 312-316.
[24]
Ranga Rao, G. V., Wightman, J. A., & Ranga Rao, D. V. (1989). Threshold Temperatures and Thermal Requirements for the Development of Spodoptera litura (Lepidoptera: Noctuidae). Environmental Entomology, 18, 548-551.
https://doi.org/10.1093/ee/18.4.548
[25]
Rouault, G., Candau, J., Lieutier, F., Nageleisen, L., Martin, J., & Warzée, N. (2006). Effects of Drought and Heat on Forest Insect Populations in Relation to the 2003 Drought in Western Europe. Annals of Forest Science, 63, 613-624.
https://doi.org/10.1051/forest:2006044
[26]
Sharma, H. C., Gowda, C. L. L., Stevensonm, P. C., Ridsdill-Smith, T. J., Clement, S. L., Ranga Rao, G. V., Romies, J., Miles, M., & El Bouhssini, M. (2007). Host Plant Resistance and Insect Pest Management in Chickpea. In S. S. Yadav, R. R. Redden, W. Chen, & B. Sharma (Eds.), Chickpea Breeding and Management (pp. 520-537). Wallingford: CAB International. https://doi.org/10.1079/9781845932138.025
[27]
Sheng, O. Y. (1994). Life Tables of Tobacco Cutworm Spodoptera litura (F). Chinese Journal of Entomology, 14, 183-205.
[28]
Singh, O. P., & Parihar, S. B. B. (1988). Effect of Different Hosts on the Development of Heliothis armigera Hub. Bulletin of Entomology, 29, 168-172.
[29]
Srinivasa Rao, M., Manimanjari, D., Vanaja, M., Rama Rao, C. A., Srinivas, K., Rao, V. U. M., & Venkateswarlu, B. (2012). Impact of Elevated CO2 on Tobacco Caterpillar, Spodoptera litura on Peanut, Arachis hypogea. Journal of Insect Science, 12, 103.
https://doi.org/10.1673/031.012.10301
[30]
Suenaga, H., & Tanaka, A. (2000). Occurrence of Beet Armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), in Welsh Onion Field. Research Report of Kagoshima Prefectural Agricultural Experiment Station, 28, 31-38.
[31]
Taylor, R. A. J., Daniel, A. H., Cardina, J., & Richard, H. M. (2018). Climate Change and Pest Management: Unanticipated Consequences of Trophic Dislocation. Agronomy, 8, 7. https://doi.org/10.3390/agronomy8010007
[32]
Terblanche, J. S., Clusella-Trullas, S., & Chown, S. L. (2010). Phenotypic Plasticity of Gas Exchange Pattern and Water Loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): Deconstructing the Basis for Metabolic Rate Variation. Journal of Experimental Biology, 213, 2940-2949. https://doi.org/10.1242/jeb.041889
[33]
Tshiala, M. F., Botai, J. O., & Olwoch, J. M. (2012). Leaf Miner Agromyzid Pest Distribution over Limpopo Province under Changing Climate. African Journal of Agricultural Research, 7, 6515-6522. https://doi.org/10.5897/AJAR12.1570
[34]
Tuan, S. J., Lee, C. C., & Chi, H. (2013). Population and Damage Projection of Spodoptera litura (F) on Peanuts (Arachis hypogaea L.) under Different Conditions Using the Age Stage TWO-SEX Life Table. Pest Management Science, 70, 805-813.
https://doi.org/10.1002/ps.3618
[35]
Umbanhowar, J., & Hastings, A. (2002). The Impact of Resource Limitation and the Phenology of Parasitoid Attack on the Duration of Insect Herbivore Outbreaks. Theoretical Population Biology, 62, 259-269. https://doi.org/10.1006/tpbi.2002.1617
[36]
Wigglesworth, V. B. (1984). Insect Physiology. New York: Cambridge University Press.