Two medicinal plants,Gardeniaerubescens and Fadogiaagrestis were selectedto evaluate their biological
activities. Their total phenolic and flavonoid contentswere assessed using folin-ciocalteu and aluminum
chloride regents’ methods. The antioxidant activity was estimated using DPPH
(1,1-diphényl-2-picrylhydrazyl),ABTS (2,2’-azinobis-[3-ethylenzothiazoline-6-sulfonic
acid]) and FRAP (ferric reducing antioxidant
power). The antiplasmodial activity of the extracts was
determined invivo on 42 NMRI mice. The results indicate that all the extracts
from both two plants contain some polyphenols. The ethanolic extract of the
leaves of Gardeniaerubescens showed the best antioxidant
activity by the method of DPPH. The aqueous extracts of the leaves of Gardeniaerubescens and the whole plant of Fadogiaagrestis have a
reducing power similar to control (quercetin). All the extracts have a low
capacity to scavenge the ABTS radical cation compared to the controls (trolox
and quercetin). Concerning the antiplasmodial activity, all the extracts
presented moderate antiplamodial activities. This result could justify the
traditional uses of Gardeniaerubescens and
References
[1]
Raobijaona, H., Randrianotahina, C.H. and Razanamparany, M. (2000) Le paludisme grave de l’enfant observé au Service de Pédiatrie du Centre Hospitalier de Befelatanana à Antananarivo (Madagascar) en 1996-1998. Archives de l’Institut Pasteur de Madagascar, 66, 23-25. https://pdfs.semanticscholar.org/915c/e0ab42ea528100a265c42c8213510924f534.pdf
[2]
Rakotonjanabelo, L.A. and Keita, M. (1996) Politique nationale de lutte contre le paludisme à Madagascar. Bulletin d'information Epidémiologique, 4, 2-3.
[3]
Organisation Mondiale de la Santé (OMS) (2019) Rapport sur le paludisme dans le monde 2019. https://www.who.int/malaria/publications/world-malaria-report-2019/report/fr
[4]
World Health Organization (WHO) (2019) Journée mondiale de lutte contre le paludisme, communiqué de presse. https://www.who.int/topics/malaria/fr
[5]
Organisation Mondiale de la santé (OMS) (2018) Treatment du paludisme-tour d’horizon. https://www.who.int/malaria/areas/treatment/overview/fr
[6]
Benoit-Vical, F., Paloque, L. and Augereau, J.-M. (2016) Résistance de l’agent du paludisme, Plasmodium falciparum aux combinaisons thérapeutiques à base d’artémisinine (ACTs): Craintes d’une chimiorésistance généralisée. Bulletin de L’Académie Nationale de Médecine, 3, 477-490. http://www.academie-medecine.fr/wp-content/uploads/2018/03/P.-477-à-490.pdf https://doi.org/10.1016/S0001-4079(19)30725-3
[7]
Ke, D. (2007) Insect Sodium Channels and Insecticide Resistance. Invertebrate Neuroscience, 7, 17-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052376 https://doi.org/10.1007/s10158-006-0036-9
[8]
Onayade, O.A., Scheffe, J.J.C. and Baerlleim, A. (1990) The Importance of Phytotherapy and Screening of Plants Used Medicinally in Africa. Planta Medica, 56, 503-504. https://doi.org/10.1055/s-2006-961040
[9]
Fleurentin, J. (2012) L’ethnopharmacologie au service de la thérapeutique: Sources et methods. Hegel, 2, 12-18. https://doi.org/10.4267/2042/47400 http://documents.irevues.inist.fr/bitstream/handle/2042/47400/HEGEL_2012_2_12.pdf
[10]
Ismaël, Y.D. (2001) Contribution de la caractérisation des principes antiplasmodiques de Gardenia sokotensis Hutch (Rubiaceae) chez la souris NMRI infectée par Plasmodium berghei. Thèse No. 05, 1-68.
[11]
Sanou, S., Ollivier, E., Azas, N., Mahiou, V., Gasquet, M., Ouattara, C.T., Nebie, I., Traore, A.S., Esposito, F., Balansard, G., Timon-David, P. and Fumoux, F. (2003) Etude ethnobotanique et activité antiplasmodiale in vitro des plantes utilisées en médecine traditionnelle Burkina Faso. Journal of Ethnopharmacology, 86, 143-147. https://doi.org/10.1016/S0378-8741(02)00381-1
[12]
Yhi-Pênê N’do, J., Pare, D., Nikiema, M. and Hilou, A. (2019) Preliminary Biological Study of Two Medicinal Plants Used in the Mouhoun Region (Burkina Faso): Boscia angustifolia A. Rich (Caparaceae) and Gardenia erubescens Stapf & Hutch (Rubiaceae). Archives of Current Research International, 18, 1-9. https://doi.org/10.9734/acri/2019/v18i430140
[13]
Meda, N.T.R., Lamien-Meda, A., Kiendrebeogo, M., Lamien, C.E., Coulibaly, A.Y., Millogo-Rasolodimby, J. and Nalcoulma, O.G. (2010) In Vitro Antioxydant, Xanthine Oxidase and et Acetylcholinesterase Inhibitory Activities of Balanites aegyptiaca (L.) Del. (Balanitaceae). Pakistan Journal of Biological Sciences, 13, 362-368. https://www.researchgate.net/publication/46254274 https://doi.org/10.3923/pjbs.2010.362.368
[14]
Velázquez, E., Tournier, H.A., Mordujovich de Buschiazzo, P., Saavedra, G. and Schinella, G.R. (2003) Antioxidant Activity of Paraguayan Plant Extracts. Fitoterapia, 14, 91-97. https://doi.org/10.1016/S0367-326X(02)00293-9
[15]
Peters, W. and Robinson, B.L. (1992) The Chemotherapy of Rodent Malaria. XLVII. Studies on Pyronaridine and Other Mannich Base Antimalarials. Annals of Tropical Medicine and Parasitology, 86, 455-465. https://doi.org/10.1080/00034983.1992.11812694
[16]
Rasoanaivo, P., Deharo, E., Rasitmamanga, U. and Frappier, F. (2004) Guidelines for the Nonclinical Evaluation of the Efficacy of Traditional Antimalarials. In: Willcox, M.L., Bodeker, G. and Rasoanaivo, P., Eds., Traditional Medicinal Plants and Malaria, CRC Press, Boca Raton, 255-270. http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers19-12/010042409.pdf
[17]
Lata, B. and Tomala, K. (2007) Apple Peel as a Contributor to Whole Fruit Quantity of Potentially Healthful Bioactive Comprunds, Cultivar and Year Implication. Journal of Agricultural and Food Chemistry, 55, 10795-10802. https://doi.org/10.1021/jf072035p
[18]
Joshi, A.P.K., Rupasinghe, H.P.V. and Khanizadeh, S. (2011) Impact of Drying Processes on Bioactive Phenolics, Vitamin C and Antioxidant Capacity of Red-Fleshed Apple Slices. Journal of Food Processing and Preservation, 35, 453-457. https://doi.org/10.1111/j.1745-4549.2010.00487.x
[19]
Turkmen, N., Sedat Velioglu, Y., Sari, F. and Yemiş, G.P. (2007) Effect of Extraction Conditions on Measured Total Polyphenol Contents and Antioxidant and Antibacterial Activities of Black Tea. Molecules, 12, 484-496. https://doi.org/10.3390/12030484
[20]
Wong, C.-C., Cheng, K.-W., Chen, F. and Li, H.-B. (2006) A Systematic Survey of Antioxidant Activity of 30 Chinese Medicinal Plants Using the Ferric Reducing Antioxidant Power Assay. Food Chemistry, 97, 705-711. https://doi.org/10.1016/j.foodchem.2005.05.049
[21]
Tawaha, K.A., Alali, F., El-Elimat, T. and Syou, M. (2007) Antioxidant Activity and Total Phenolic Content of Aqueous and Methanolic Extracts of Jordanian Plants: An ICBG Project. Natural Product Research, 21, 1121-1131. https://doi.org/10.1080/14786410701590285
[22]
Wojdylo, A., Oszmianski, J. and Czemerys, R. (2007) Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chemistry, 105, 940-949. https://www.sciencedirect.com/science/article/abs/pii/S0308814607003974 https://doi.org/10.1016/j.foodchem.2007.04.038
[23]
Djeridane, A., Yous, M., Nadjemi, B., Boutassouna, D., Stocker, P. and Vidal, N. (2006) Antioxidant Activity of Some Algerian Medicinal Plants Extracts Containing Phenolic Compounds. Food Chemistry, 97, 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
[24]
Pickup, J.C. (2004) Inflammation and Activated Innate Immunity in the Pathogenesis of Type 2 Diabetes. Diabetes Care, 27, 813-823. https://pubmed.ncbi.nlm.nih.gov/14988310 https://doi.org/10.2337/diacare.27.3.813
[25]
Danowski, R. (1991) Inflammation en rhumatologie. Annales de Kinésithérapie, 18, 233-240. https://nanopdf.com/download/inflammation-en-rhumatologie_pdf#
[26]
Srivastava, P., Puri, S.K. and Dutta, G.P. (1992) Status of Oxidative Stress and Antioxidant Defences during Plasmodium knowlesi Infection and Chloroquine Treatment in Macaca mulatta. International Journal for Parasitology, 22, 243-245. https://www.sciencedirect.com/science/article/abs/pii/002075199290109X https://doi.org/10.1016/0020-7519(92)90109-X
[27]
Carmona, A.P.J., Burgos, L.C. and Blair, S. (2003) Oxidative Stress in Patients with Non-Complicated Malaria. Clinical Biochemistry, 36, 71-78. https://pubmed.ncbi.nlm.nih.gov/12554064 https://doi.org/10.1016/S0009-9120(02)00423-X