All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

The Total Energy in the Interaction of X-Ray Photons with Capacitors

DOI: 10.4236/wjcmp.2020.104010, PP. 159-177

Keywords: X-Rays, Power, Light-Matter Interaction, Conservation of Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Context and Background: In this research, we investigate the interaction of X-rays with a capacitor by studying the voltage established in the capacitor during the illumination. Motivation: We aim at verifying that the total energy conserved in the interaction is Pτ, i.e. the product of the average power P times the period τ of the X-rays. Hypothesis: Our investigation relies on the hypothesis that the voltage responsivity πV of the capacitor should be small, according to previous research. The parameter πV is the ratio between the voltage produced and the average power P of the X-rays, and measures the performance of the capacitor in response to the X-rays. Method: We measure the voltage produced by the capacitor in response to the X-rays, and then determine the average power P of the X-rays according to a procedure already assessed with infrared and visible light. Results: In our experiments, P turns out to be in the range between 10-3 W to 100 W. Our procedure enables us to unveil the relationship between the average power P and the effective dose, an important operating parameter used to measure the delivery of X-rays in practical applications, such as standard X-ray medical imaging machines. Conclusions: We believe that our procedure paves the way for designing a possible X-ray power-meter, a tool presently missing in the market of X-ray characterization tools.

References

[1]  Field, G.D. and Rieke, F. (2002) Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity. Neuron, 34, 773-785.
https://doi.org/10.1016/S0896-6273(02)00700-6
[2]  Osterhoudt, G.B., Diebel, L.K., Gray, M.J., Yang, X., Stanco, J., Huang, X., Shen, B., Ni, N., Moll, P.J., Ran, Y. and Burch, K.S. (2019) Colossal Mid-Infrared Bulk Photovoltaic Effect in a Type-I Weyl Semimetal. Nature Materials, 18, 471-475.
https://doi.org/10.1038/s41563-019-0297-4
[3]  Ji, Z., Liu, G., Addison, Z., Liu, W., Yu, P., Gao, H., Liu, Z., Rappe, A.M., Kane, C.L., Mele, E.J. and Agarwal, R. (2019) Spatially Dispersive Circular Photogalvanic Effect in a Weyl Semimetal. Nature Materials, 18, 955-962.
https://doi.org/10.1038/s41563-019-0421-5
[4]  Rivera, N., Wong, L.J., Joannopoulos, J.D., Soljačić, M. and Kaminer, I. (2019) Light Emission Based on Nanophotonic Vacuum Forces. Nature Physics, 15, 1284-1289.
https://doi.org/10.1038/s41567-019-0672-8
[5]  Boone, D.E., Jackson, C.H., Swecker, A.T., Hergenrather, J.S., Wenger, K.S., Kokhan, O., Terzić, B., Melnikov, I., Ivanov, I.N., Stevens, E.C. and Scarel, G. (2018) Probing the Wave Nature of Light-Matter Interaction. World Journal of Condensed Matter Physics, 8, 62-89.
https://doi.org/10.4236/wjcmp.2018.82005
[6]  Gordon, A.L. and Scarel, G. (2018) Interaction in the Steady State between Electromagnetic Waves and Matter. World Journal of Condensed Matter Physics, 8, 171-184.
https://doi.org/10.4236/wjcmp.2018.84012
[7]  Scarel, G. and Stevens, E.C. (2019) The Effect of Infrared Light’s Power on the Infrared Spectra of Thin Films. World Journal of Condensed Matter Physics, 9, 1-21.
https://doi.org/10.4236/wjcmp.2019.91001
[8]  Scarel, G. (2019) Quantum and Non-Quantum Formulation of Eye’s Adaptation to Light’s Intensity Increments. World Journal of Condensed Matter Physics, 9, 62-74.
https://doi.org/10.4236/wjcmp.2019.93005
[9]  Scarel, G. (2019) The Role of Pτ in the Photothermoelectric Effect and in Photoredox Catalysis Reactions. World Journal of Condensed Matter Physics, 9, 91-101.
https://doi.org/10.4236/wjcmp.2019.94007
[10]  Yan, W., Frühling, C., Golovin, G., Heden, D., Luo, J., Zhang, P., Zhao, B., Zhang, J., Liu, C., Chen, M., Chen, S., Banerjee, S. and Umstadter, D. (2017) High-Order Multiphoton Thomson Scattering. Nature Photonics, 11, 514-520.
https://doi.org/10.1038/nphoton.2017.100
[11]  Pickens, K.T. and Scarel, G. (2020) Estimation of the Power of the Anomalous Microwave Emission. World Journal of Condensed Matter Physics, 10, 105-117.
https://doi.org/10.4236/wjcmp.2020.103007
[12]  Vedantham, H.K., Callingham, J.R., Shimwell, T.W., Tasse, C., Pope, B.J., Bedell, M., Snellen, I., Best, P., Hardcastle, M.J., Haverkorn, M., Mechev, A., O’Sullivan, S.P., Röttgering, H.J.A. and White, G.J. (2020) Coherent Radio Emission from a Quiescent Red Dwarf Indicative of Star-Planet Interaction. Nature Astronomy, 4, 577-583.
https://doi.org/10.1038/s41550-020-1011-9
[13]  Kim, M.H., Vickers, E. and Gersdorff, H.V. (2012) Patch-Clamp Capacitance Measurements and Ca2+ Imaging at Single Nerve Terminals in Retinal Slices. Journal of Visual Experiments, 59, e3345.
https://doi.org/10.3791/3345
[14]  Adam, Y., Kim, J.J., Lou, S., Zhao, Y., Xie, M.E., Brinks, D., Wu, H., Mostajo-Radji, M.A., Kheifets, S., Parot, V., Chettih, S., Williams, K.J., Gmeiner, B., Farhi, S.L., Madisen, L., Buchanan, E.K., Kinsella, I., Zhou, D., Paninski, L., Harvey, C.D., Zeng, H., Arlotta, P., Campbell, R.E. and Cohen, A.E. (2019) Voltage Imaging and Optogenetics Reveal Behavior-Dependent Changes in Hippocampal Dynamics. Nature, 569, 413-417.
https://doi.org/10.1038/s41586-019-1166-7
[15]  Tanaka, T., Kato, M., Saito, N., Owada, S., Tono, K., Yabashi, M. and Ishikawa, T. (2017) Compact Bolometric Radiometer for Free-Electron Lasers in a Wavelength Range from Extreme-Ultraviolet to X-Rays. Optics Letters, 42, 4776-4779.
https://doi.org/10.1364/OL.42.004776
[16]  Heimann, P., Fritz, D., Krzywinsky, J., Moeller, S., Nordlund, D., Reid, A., Stefan, P., Walter, P. and Welch, J. (2019) Laser Power Meters as Portable X-Ray Power Monitors. X-Ray Free-Electron Lasers: Advances in Source Development and Instrumentation V, 11038, Article ID: 110380R.
https://doi.org/10.1117/12.2526119
[17]  (2020) Radiation Exposure from Medical Exams and Procedures. Health Physics Society Specialists in Radiation Safety, 1-4.
[18]  Zhao, D., Fabiano, S., Berggren, M. and Crispin, X. (2017) Ionic Thermoelectric Gating Organic Transistors. Nature Communications, 8, Article No. 14214.
https://doi.org/10.1038/ncomms14214
[19]  Chandler, D. (1987) Introduction to Modern Statistical Mechanics. Oxford University Press Inc., Oxford.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413