全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cracking the Snake Detection Theory: The Subcortical Visual Pathway as a Major Player in Cultural Transformations

DOI: 10.4236/wjns.2020.104018, PP. 166-190

Keywords: Active Inference, Blindsight, Delayed Detachment Hypothesis, Snake Detec-tion Theory, Subcortical Route, V2 Area, V4 Area

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to the proposed hypothesis, graphic characters trigger the subcortical visual route. The reaction discussed is very weak. Yet, its very existence has an unusual importance: characters and (occluded) venomous snakeskin patterns reveal themselves as conflatable. Furthermore, following tractogra- phic research, a functional segregation of the subcortical pathway is to be presupposed. Thus, there can’t be a later dissociation of two stimuli previously associated. The outcomes of lecture will gradually appear probabilistically (much) more peaceful than encountering a venomous snake, though, and thus a continuous lessening of the reaction is expectable. Here, on one hand, it is relevant that the subcortical visual pathway goes to the amygdala. The reactions we describe tap into goal-oriented processes, and they will do that unfettered. On the other hand, in the case of characters, since the beginning, fear has been converted into appetition to a great degree. This process should be fostered in the presence of light. In this way, luminosity might become a conditioned stimulus for attraction. In this case, a Pavlovian addiction for light will foster, yet also—from the point of view of reward feeling—counterbalance the lessening of the stimulation elicited by characters. The addiction we refer to is one towards light accompanied by graphic signs. Yet, as opposed to the case of the luminous medium, the attention captured by the later ones taken for themselves is continuously reduced.

References

[1]  Skeide, M.A., Kumar, U., Mishra, R.K., Tripathi, V.N., Guleria, A., Singh, J.P., Eisner, F. and Huettig, F. (2017) Learning to Read Alters Cortico-Subcortical Cross-Talk in the Visual System of Illiterates. Science Advances, 3, e1602612.
https://doi.org/10.1126/sciadv.1602612
[2]  Wheeler, B.C., Bradley, B.J. and Kamilar, J.M. (2011) Predictor of Orbital Convergence in Primates: A Test of the Snake Detection Hypothesis of Primate Evolution. Journal of Human Evolution, 61, 233-242.
https://doi.org/10.1016/j.jhevol.2011.03.007
[3]  Coelho, C.M., Suttiwan, P., Faiz, A.M., Ferreira-Santos, F. and Zsido, A.N. (2019) Are Humans Prepared to Detect, Fear, and Avoid Snakes? The Mismatch between Laboratory and Ecological Evidence. Frontiers in Psychology, 10, Article No. 2094.
https://doi.org/10.3389/fpsyg.2019.02094
[4]  Isbell, L.A. (2009) The Fruit, the Three, and the Serpent: Why We See So Well? Harvard University Press, Cambridge & London.
https://doi.org/10.2307/j.ctvjnrvj0
[5]  Shimizu, T., Patton, T.B., Szafranski, G. and Butler, A.B. (2009) Evolution of the Visual System in Reptiles and Birds. In: Binder, M.D., Hirokawa, N. and Windhorst, U., Eds., Encyclopedia of Neuroscience, Springer, Berlin & Heidelberg, 1466-1472.
https://doi.org/10.1007/978-3-540-29678-2_3179
[6]  Carr, J.A. (2015) I’ll Take the Low Road: The Evolutionary Underpinnings of Visually Triggered Fear. Frontier in Neuroscience, 9, 414.
https://doi.org/10.3389/fnins.2015.00414
[7]  Da Silva, F.O., Fabre, A.-C., Savriama, Y., Ollonen, J., Mahlow, K., Herrel, A., Müller, J. and Di-Poï, N. (2018) The Ecological Origins of Snakes as Revealed by Skull Evolution. Nature Communications, 9, Article No. 376.
https://doi.org/10.1038/s41467-017-02788-3
[8]  Watanabe, A., Fabre, A.-C., Felice, R.N., Maisano, J.A., Müller, J., Herrel, A. and Goswami, A. (2019) Ecomorphological Diversification in Squamates from Conserved Pattern of Cranial Integration. PNAS, 116, 14688-14697.
https://doi.org/10.1073/pnas.1820967116
[9]  Morinaga, G. and Bergmann, P.J. (2020) Evolution of Fossorial Locomotion in the Transition from Tetrapod to Snake-Like Lizards. Proceedings of Royal Society B, 287.
https://doi.org/10.1098/rspb.2020.0192
[10]  Simðes, B.F., Sampaio, F.L., Jared, C., Antoniazzi, M.M., Loew, E.R., Bowmaker, J.K., Rodriguez, A., Hart, N.S., Hunt, D.M., Partridge, J.C. and Gower, D.J. (2015) Visual System Evolution and the Nature of the Ancestral Snake. Journal of Evolutionary Biology, 28, 1309-1320.
https://doi.org/10.1111/jeb.12663
[11]  Cyriac, V.P. and Kodandaramaiah, U. (2018) Digging Their Own Macroevolutionary Grave: Fossoriality as an Evolutionary Dead End in Snakes. Journal of Evolutionary Biology, 31, 587-598.
https://doi.org/10.1111/jeb.13248
[12]  Mahler, D.L., Weber, M.G., Wagner, C.E. and Ingram, T. (2017) Pattern and Process in the Comparative Study of Convergent Evolution. The American Naturalist, 190, S13-S28.
https://doi.org/10.1086/692648
[13]  Peirce, T. (2012) Convergence and Parallelism in Evolution: A Neo-Gouldian Account. The British Journal for the Philosophy of Science, 63, 429-468.
https://doi.org/10.1093/bjps/axr046
[14]  Stayton, C.T. (2015) The Definition, Recognition, and Interpretation of Convergent Evolution, and Two New Measures for Quantifying and Assessing the Significance of Convergence. Evolution, 69, 2140-2153.
https://doi.org/10.1111/evo.12729
[15]  Kinoshita, M., Kato, R., Isa, K., Kobayashi, K., Kobayashi, K., Onoe, H. and Isa, T. (2019) Dissecting the Circuit for Blindsight to Reveal the Critical Role of Pulvinar and Superior Colliculus. Nature Communications, 10, Article No. 135.
https://doi.org/10.1038/s41467-018-08058-0
[16]  Koller, K., Rafal, R.D., Platt, A. and Mitchell, N.D. (2018) Orienting toward Threat: Contributions of a Subcortical Pathway Transmitting Retinal Afferents to the Amygdala via the Superior Colliculus and Pulvinar. Neuropsychologia, 128, 78-86.
https://doi.org/10.1016/j.neuropsychologia.2018.01.027
[17]  McFadyen, J. (2019) Investigating the Subcortical Route to the Amygdala across Species and in Disordered Fear Responses. Journal of Experimental Neuroscience, 13.
https://doi.org/10.1177/1179069519846445
[18]  McFadyen, J., Mermillod, M., Mattingley, J.B., Halász, V. and Garrido, M.I. (2017) A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion. Journal of Neuroscience, 37, 3864-3874.
https://doi.org/10.1523/JNEUROSCI.3525-16.2017
[19]  Shipp, S. (2003) The Functional Logic of Cortico-Pulvinar Connections. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 1605-1624.
https://doi.org/10.1098/rstb.2002.1213
[20]  Wilke, M., Schneider, L., Dominguez-Vargas, A.-U., Schmidt-Samoa, C., Miloserdov, K., Nazzal, A., Dechent, P., Cabral-Calderin, Y., Scherberger, H., Kagan, I. and Bähr, M. (2018) Reach and Grasp Deficits Following Damage to the Dorsal Pulvinar. Cortex, 99, 135-149.
https://doi.org/10.1016/j.cortex.2017.10.011
[21]  Fiebelkorn, I.C. and Kastner, S. (2019) The Puzzling Pulvinar. Neuron, 101, 201-203.
https://doi.org/10.1016/j.neuron.2018.12.032
[22]  Arcaro, M.J., Pinsk, M.A., Chen, J. and Kastner, S. (2018) Organizing Principles of Pulvino-Cortical Functional Coupling in Humans. Nature Communications, 9, Article No. 5382.
https://doi.org/10.1038/s41467-018-07725-6
[23]  Hakamata, Y., Sato, E., Komi, S., Moriguchi, Y., Izawa, S., Murayama, N., Hanakawa, T., Inoue, Y. and Tagaya, H. (2016) The Functional Activity and Effective Connectivity of Pulvinar are Modulated by Individual Differences in Threat-Related Attentional Bias. Scientific Reports, 6, Article No. 34777.
https://doi.org/10.1038/srep34777
[24]  Elorette, C., Forcelli, P.A., Saunders, R.C. and Malkova, L. (2018) Colocalization of Tectal Inputs with Amygdala-Projecting Neurons in the Macaque Pulvinar. Frontiers in Neural Circuits, 12, 91.
https://doi.org/10.3389/fncir.2018.00091
[25]  Tamietto, M. and Morrone, M.C. (2016) Visual Plasticity: Blindsight Bridges Anatomy and Function in the Visual System. Current Biology, 26, 70-73.
https://doi.org/10.1016/j.cub.2015.11.026
[26]  Boynton, G.M. and Hegdé, J. (2004) Visual Cortex: The Continuing Puzzle of Area V2. Current Biology, 14, 523-524.
https://doi.org/10.1016/j.cub.2004.06.044
[27]  Kawai, N. (2019) The Fear of Snakes. Evolutionary and Psychobiological Perspectives on Our Innate Fear. Springer Nature Singapore Pte Ltd., Singapore.
https://doi.org/10.1007/978-981-13-7530-9
[28]  Peterhans, E. and von der Heydt, R. (1989) Mechanisms of Contour Perception in Monkey Visual Cortex. II. Contour Bridging Gaps. Journal of Neuroscience, 9, 1449- 1763.
https://doi.org/10.1523/JNEUROSCI.09-05-01749.1989
[29]  Cohen, A., Buia, C. and Tiesinga, P. (2014) Dependence of V2 Illusory Contour Response on V1 Cell Properties and Topographic Organization. Biological Cybernetics, 108, 337-354.
https://doi.org/10.1007/s00422-014-0602-x
[30]  Ramsden, B.M., Hung, C.P. and Roe, A.W. (2001) Real and Illusory Contour Pro- cessing in Area V1 of the Primate: A Cortical Balancing Act. Cerebral Cortex, 11, 648-665.
https://doi.org/10.1093/cercor/11.7.648
[31]  Roe, A.W., Chelazzi, L., Connor, C.E., Conway, B.R., Fujita, I., Gallant, J.L., Lu, H. and Vanduffel, W. (2012) Toward a Unified Theory of Visual Area V4. Neuron, 74, 12-29.
https://doi.org/10.1016/j.neuron.2012.03.011
[32]  Parker, A.J. (2020) Intermediate Level Cortical Areas and the Multiple Roles of Area V4. Current Opinion in Physiology, 16, 61-67.
https://doi.org/10.1016/j.cophys.2020.07.003
[33]  Merrigan, W.H. and Pham, H.A. (1998) V4 Lesions in Macaques Affect Both Single- and Multiple-Viewpoint Shape Discriminations. Visual Neuroscience, 15, 359- 367.
https://doi.org/10.1017/S0952523898152112
[34]  Brischoux, F., Pizzatto, L. and Shine, R. (2010) Insight into the Adaptive Significance of Vertical Pupil in Snakes. Journal of Evolutionary Biology, 23, 1878-1885.
https://doi.org/10.1111/j.1420-9101.2010.02046.x
[35]  Banks, M.S., Sprague, W.W., Schmoll, J., Parnell, J.A.Q. and Love, G.D. (2015) Why Do Animal Eyes Have Pupils of Different Shapes? Science Advances, 7, e1500391.
https://doi.org/10.1126/sciadv.1500391
[36]  van Strien, J.W. and Isbell, L.A. (2017) Snake Scales, Partial Exposure and the Snake Detection Theory: A Human Event-Related Potentials Study. Scientific Reports, 7, Article No. 46331.
https://doi.org/10.1038/srep46331
[37]  Grassini, S., Valli, K., Souchet, J., Aubret, F., Revonsuo, G.A. and Koivisto, M. (2019) Pattern Matters: Snakes Exhibiting Triangular and Diamond-Shaped Skin Patterns Modulate Electrophysiological Activity in Human Visual Cortex. Neuropsychologia, 131, 62-72.
https://doi.org/10.1016/j.neuropsychologia.2019.05.024
[38]  van Strien, J.W. and van der Peijl, M.K. (2018) Enhanced Early Processing in Response to Snake and Tryphophobic Stimuli. BMC Psychology, 6, Article No. 21.
https://doi.org/10.1186/s40359-018-0235-2
[39]  Eklund, R. and Wiens, S. (2018) Visual Awareness Negativity Is an Early Neural Correlate of Awareness: A Preregistered Study with Two Gabor Sizes. Cognitive, Affective & Behavioral Neuroscience, 18, 176-188.
https://doi.org/10.3758/s13415-018-0562-z
[40]  Grassini, S., Holm, S.K., Railo, H. and Koivisto, M. (2016) Who Is Afraid of the Invisible Snake? Subjective Visual Awareness Modulates Posterior Brain Activity for Evolutionarily Threatening Stimuli. Biological Psychology, 121, 53-61.
https://doi.org/10.1016/j.biopsycho.2016.10.007
[41]  Isbell, L.A. and Etting, S.F. (2016) Scales Drive Detection, Attention, and Memory of Snakes in Wild Vervet Monkeys (Chlorocebus pygerythrus). Primates, 58, 121- 129.
https://doi.org/10.1007/s10329-016-0562-y
[42]  Kawai, N. and He, H. (2016) Breaking the Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions. PLoS ONE, 11, e0164342.
https://doi.org/10.1371/journal.pone.0164342
[43]  Allen, W.L., Baddeley, R., Scott-Samuel, N.E. and Cuthill, I.C. (2013) The Evolution and Function of Pattern Diversity in Snakes. Behavioral Ecology, 24, 1237-1250.
https://doi.org/10.1093/beheco/art058
[44]  van Strien, J.W., Christiaans, G., Franken, I.H.A. and Huijding, J. (2016) Curvilinear Shapes and the Snake Detection Hypothesis: An ERP Study. Psychophysiology, 53, 252-257.
https://doi.org/10.1111/psyp.12564
[45]  Hayakawa, S., Kawai, N. and Masataka, N. (2011) The Influence of Color on Snake Detection in Visual Search in Human Children. Scientific Reports, 1, Article No. 80.
https://doi.org/10.1038/srep00080
[46]  Prokop, P., Fančovičová, J. and Kučerová, A. (2018) Aposematic Colouration Does Not Explain Fear of Snakes in Humans. Journal of Ethology, 36, 35-41.
https://doi.org/10.1007/s10164-017-0533-9
[47]  Souchet, J. and Aubret, F. (2016) Revisiting the Fear of Snakes in Children: The Role of Aposematic Signalling. Scientific Reports, 6, Article No. 37619.
https://doi.org/10.1038/srep37619
[48]  Wüster, W., Allum, C.S.E., Bjargardóttir, I.B., Bailey, K.L., Dawson, K.J., Guenioui, J., Lewis, J., McGurk, J., Moore, A.G., Niskanen, M. and Pollard, C.P. (2004) Do Aposematism and Batesian Mimicry Require Bright Colours? A Test, Using European Viper Markings. Proceedings of Royal Society of London B, 271, 2495-2499.
https://doi.org/10.1098/rspb.2004.2894
[49]  Rádlová, S., Janovcová, M., Sedláčková, K., Polák, J., Nácar, D., Pelééková, á., Frynta, D. and Landová, E. (2019) Snakes Represent Emotionally Salient Stimuli That May Evoke Both Fear and Disgust. Frontiers in Psychology, 10, Article No. 1085.
https://doi.org/10.3389/fpsyg.2019.01085
[50]  Almeida, I., Soares, S.C. and Castelo-Branco, M. (2015) The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes. PLoS ONE, 10, e0129949.
https://doi.org/10.1371/journal.pone.0129949
[51]  Villeneuve, M.Y., Kupers, R., Gjedde, A., Ptito, M. and Casanova, C. (2005) Pattern-Motion Selectivity in the Human Pulvinar. NeuroImage, 28, 474-480.
https://doi.org/10.1016/j.neuroimage.2005.06.015
[52]  Schneider, K.A. and Kastner, S. (2005) Visual Responses of the Human Superior Colliculus: A High Resolution Functional Resonance Imaging Study. Journal of Neurophysiology, 94, 2491-2503.
https://doi.org/10.1152/jn.00288.2005
[53]  Ajina, S., Pollard, M. and Bridge, H. (2020) The Superior Colliculus and Amygdala Support Evaluation of Face Trait in Blindsight. Frontiers in Neurology, 11, 769.
https://doi.org/10.3389/fneur.2020.00769
[54]  Burra, N., Hervais-Adelman, A., Celeghin, A., de Gelder, B. and Pegna, A.J. (2019) Affective Blindsight Relies on Low Spatial Frequencies. Neuropsychologia, 128, 44-49.
https://doi.org/10.1016/j.neuropsychologia.2017.10.009
[55]  Cecere, R., Bertini, C. and Làdavas, E. (2013) Differential Contribution of Cortical and Subcortical Visual Pathways to the Implicit Processing of Emotional Faces: A tDCS Study. Journal of Neuroscience, 22, 6469-6475.
https://doi.org/10.1523/JNEUROSCI.3431-12.2013
[56]  Celeghin, A., Bagnis, A., Diano, M., Méndez, C.A., Costa, T. and Tamietto, M. (2019) Functional Neuroanatomy of Blindsight Revealed by Activation Likelihood Estimation Meta-Analysis. Neuropsychologia, 128, 109-118.
https://doi.org/10.1016/j.neuropsychologia.2018.06.007
[57]  Garrido, M.I. (2012) Brain Connectivity: The Feel of Blindsight. Current Biology, 22, R599-R600.
https://doi.org/10.1016/j.cub.2012.06.012
[58]  Tamietto, M. and de Gelder, B. (2008) Affective Blindsight in the Intact Brain: Neural Interhemispheric Summation for Unseen Fearful Expressions. Neuropsychologia, 46, 820-828.
https://doi.org/10.1016/j.neuropsychologia.2007.11.002
[59]  Jolij, J. and Lamme, V.A.F. (2005) Repression of Unconscious Information by Conscious Processing: Evidence from Affective Blindsight Induced by Transcranial Magnetic Stimulation. PNAS, 102, 10747-10751.
https://doi.org/10.1073/pnas.0500834102
[60]  Jolij, J. (2008) From Affective Blindsight to Affective Blindness: When Cortical Pro- cessing Suppresses Subcortical Information. In: Columbus, F., Ed., Neural Pathways, Nova Science Publishers, New York, 205-208.
[61]  Wang, L., Yang, L.-C., Meng, Q.-L. and Ma, Y.-Y. (2018) Superior Colliculus-Pul- vinar-Amygdala Subcortical Visual Pathway. Acta Physiologica Sinica, 70, 79-84.
[62]  Celeghin, A., de Gelder, B. and Tamietto, M. (2015) From Affective Blindsight to Emotional Consciousness. Conscious Cognition, 36, 414-425.
https://doi.org/10.1016/j.concog.2015.05.007
[63]  LoBue, V. and Larson, C.L. (2010) What Makes an Angry Face Look So… Angry? Examining Visual Attention to the Shape of Threat in Children and Adults. Visual Cognition, 18, 1165-1178.
https://doi.org/10.1080/13506281003783675
[64]  Larson, C.L., Aronoff, J. and Steuer, E.L. (2012) Simple Geometric Shapes Are Implicitly Associated with Affective Value. Motivation and Emotion, 36, 404-413.
https://doi.org/10.1007/s11031-011-9249-2
[65]  Goffaux, V. (2006) Faces Are “Spatial”—Holistic Face Perception Is Supported by Low Spatial Frequencies. Journal of Experimental Psychology, Human Perception and Performance, 32, 1023-1039.
https://doi.org/10.1037/0096-1523.32.4.1023
[66]  Jessen, S. and Grossmann, T. (2017) Exploring the Role of Spatial Frequency during Neural Emotion Processing in Human Infants. Frontiers in Human Neuroscience, 11, 486.
https://doi.org/10.3389/fnhum.2017.00486
[67]  Takahata, T. (2016) What Does Cytochrome Oxidase Histochemistry Represent in the Visual Cortex. Frontiers in Neuroanatomy, 10, 79.
https://doi.org/10.3389/fnana.2016.00079
[68]  Zhou, H., Schafer, R.J. and Desimone, R. (2016) Pulvinar-Cortex Interactions in Vision and Attention. Neuron, 89, 209-220.
https://doi.org/10.1016/j.neuron.2015.11.034
[69]  Arcaro, M.J., Pinsk, M.A. and Kastner, S. (2015) The Anatomical and Functional Organization of the Human Visual Pulvinar. The Journal of Neuroscience, 35, 9848-9871.
https://doi.org/10.1523/JNEUROSCI.1575-14.2015
[70]  Abivardi, A. and Bach, D.R. (2017) Human Amygdala Nuclei with Thalamus and Cortex Subdivision in Vivo. Human Brain Mapping, 38, 3927-3940.
https://doi.org/10.1002/hbm.23639
[71]  Tamietto, M., Pullens, P., de Gelder, B., Weiskrantz, L. and Goebel, R. (2012) Subcortical Connections to Human Amygdala and Changes Following Destruction of the Visual Cortex. Current Biology, 22, 1449-1455.
https://doi.org/10.1016/j.cub.2012.06.006
[72]  Stam, D., Huang, Y.-A. and Van den Stock, J. (2018) Gray Matter Volume of a Region in the Thalamic Pulvinar Is Specifically Associated with Novelty Seeking. Frontiers in Psychology, 9, Article No. 203.
https://doi.org/10.3389/fpsyg.2018.00203
[73]  Barron, D.S., Eickhoff, S.B., Clos, M. and Fox, P.T. (2015) Human Pulvinar Functional Organization and Connectivity. Human Brain Mapping, 36, 2417-2431.
https://doi.org/10.1002/hbm.22781
[74]  Bertini, C., Pietrelli, M., Braghittoni, D. and Làdavas, E. (2018) Pulvinar Lesions Disrupt Fear-Related Implicit Visual Processing in Hemianopic Patients. Frontiers in Psychology, 9, Article No. 2329.
https://doi.org/10.3389/fpsyg.2018.02329
[75]  Ward, R., Calder, A.J., Parker, M. and Arend, I. (2007) Emotion Recognition Following Human Pulvinar Damage. Neuropsychologia, 45, 1973-1978.
https://doi.org/10.1016/j.neuropsychologia.2006.09.017
[76]  Elliott, M.L., Knodt, A.R., Ireland, D., Morris, M.L., Poulton, R., Ramrakha, S., Sison, M.L., Moffitt, T.E. and Caspi, A. (2020) What Is the Test-Retest Reliability of Common Task-fMRI Measure? New Empirical Evidence and a Meta-Analysis. Psychological Science, 31, 792-806.
https://doi.org/10.1177/0956797620916786
[77]  Poldrack, R. (2017) Neuroscience. The Risks of Reading the Brain. Nature, 451, 156.
https://doi.org/10.1038/541156a
[78]  Morris, J.S., Öhman, A. and Dolan, R.J. (1999) A Subcortical Pathway to the Right Amygdala Mediating “Unseen” Fear. PNAS, 96, 1680-1685.
https://doi.org/10.1073/pnas.96.4.1680
[79]  Siman-Tov, T., Gadoth, N., Papo, D. and Schonberg, T. (2008) Mind Your Left: Spatial Biasa in Subcortical Fear Processing. Journal of Cognitive Neuroscience, 21, 1782- 1789.
https://doi.org/10.1162/jocn.2009.21120
[80]  Hardee, J.E., Thompson, J.C. and Puce, A. (2008) The Left Amygdala Knows Fear: Laterality in the Amygdala Response to Fearful Eyes. Social Cognitive and Affective Neuroscience, 3, 47-54.
https://doi.org/10.1093/scan/nsn001
[81]  Herrmann, L., Vicheva, P., Kasties, V., Danyeli, L.V., Szycik, G.R., Denzel, D., Fan, Y., Van der Meer, J., Vester, J.C., Eskoetter, H., Schultz, M. and Walter, M. (2020) fMRI Revealed Reduced Amygdala Activation after Nx4 in Mildly to Moderately Stressed Healthy Volunteers in a Randomized, Placebo-Controlled, Cross-Over Trial. Scientific Reports, 10, Article No. 3802.
https://doi.org/10.1038/s41598-020-60392-w
[82]  Frühholz, S., Hofstetter, C., Cristinzio, C., Saj, A., Seeck, M., Vuilleumier, P. and Grandjean, D. (2015) Asymmetrical Effects of Unilateral Right or Left Amygdala Damage on Auditory Cortical Processing of Vocal Emotions. PNAS, 112, 1583- 1588.
https://doi.org/10.1073/pnas.1411315112
[83]  Bonnet, L., Comte, A., Tatu, L., Millot, J.-L., Moulin, T. and Medeiros de Bustos, E. (2015) The Role of the Amygdala in the Perception of Positive Emotions: An “Intensity Detector”. Frontiers in Behavioral Neuroscience, 9, Article No. 178.
https://doi.org/10.3389/fnbeh.2015.00178
[84]  Lanteaume, L. Khalfa, S., Régis, J., Marquis, P., Chauvel, P. and Bartolomei, F. (2007) Emotion Induction after Direct Intracerebral Stimulations of Human Amygdala. Cerebral Cortex, 17, 1307-1313.
https://doi.org/10.1093/cercor/bhl041
[85]  Hu, Y., Chen, Z., Huang, L., Xi, Y., Li, B., Wang, H., Yan, J., Lee, T.M.C., Tao, Q., So, K.-F. and Ren, C. (2017) A Translational Study on Looming-Evoked Defensive Response and the Underlying Subcortical Pathway in Autism. Scientific Reports, 7, Article No. 14755.
https://doi.org/10.1038/s41598-017-15349-x
[86]  Michely, J., Rigoli, F., Rutledge, R.B., Hauser, T.U. and Dolan, R.J. (2020) Distinct Processing of Aversive Experience in Amygdala Subregions. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5, 291-300.
https://doi.org/10.1016/j.bpsc.2019.07.008
[87]  McFadyen, J., Mattingley, J.B. and Garrido, M.I. (2019) An Afferent White Matter Pathway from the Pulvinar to the Amygdala Facilitates Fear Recognition. eLife, 8, e40766.
https://doi.org/10.7554/eLife.40766
[88]  O’Neill, P.K., Gore, F. and Salzman, C.D. (2018) Basolateral Amygdala Circuitry in Positive and Negative Valence. Current Opinion in Neurobiology, 49, 175-183.
https://doi.org/10.1016/j.conb.2018.02.012
[89]  Fernando, A.B.P., Murray, J.E. and Milton, A.L. (2013) The Amygdala: Securing Pleasure and Avoiding Pain. Frontiers in Behavioral Neuroscience, 7, Article No. 190.
https://doi.org/10.3389/fnbeh.2013.00190
[90]  Cowey, A. (2010) The Blindsight Saga. Experiments in Brain Research, 200, 3-24.
https://doi.org/10.1007/s00221-009-1914-2
[91]  Ajina, S., Pestilli, F., Rokem, A., Kennard, C. and Bridge, H. (2015) Human Blindsight Is Mediated by an Intact Geniculo-Extrastriate Pathway. eLife, 4, e08935.
https://doi.org/10.7554/eLife.08935
[92]  Cauchoix, M. and Crouzet, S. (2013) How Plausible Is a Subcortical Account of Rapid Visual Recognition? Frontiers in Human Neuroscience, 7, Article No. 39.
https://doi.org/10.3389/fnhum.2013.00039
[93]  Hurme, M., Koivisto, M., Revonsuo, A. and Railo, H. (2019) V1 Activity during Feedforwards and Early Feedback Processing Is Necessary for Both Conscious and Unconscious Motion Perception. NeuroImage, 185, 313-321.
https://doi.org/10.1016/j.neuroimage.2018.10.058
[94]  Railo, H., Andersson, E., Kaasinen, V. and Laine, T. (2014) Unlike in Clinical Blindsight Patients, Unconscious Processing of Chromatic Information Depends on Early Visual Cortex in Healthy Humans. Brain Stimulation, 7, 415-420.
https://doi.org/10.1016/j.brs.2014.01.060
[95]  Jimenez, M., Grassini, S., Montoro, P.R., Luna, D.E. and Koivisto, M. (2018) Neural Correlates of Visual Awareness at Stimulus Low vs. High-Levels of Processing. Neuropsychologia, 121, 144-152.
https://doi.org/10.1016/j.neuropsychologia.2018.11.001
[96]  Koivisto, M. and Grassini, S. (2016) Neural Processing around 200 ms after Stimulus-Onset Correlates with Subjective Visual Awareness. Neuropsychologia, 84, 235- 243.
https://doi.org/10.1016/j.neuropsychologia.2016.02.024
[97]  Koivisto, M., Salminen-Vaparanta, N., Grassini, S. and Revonsuo, A. (2016) Subjective Visual Awareness Emerges Prior to P3. European Journal of Neuroscience, 43, 1601-1611.
https://doi.org/10.1111/ejn.13264
[98]  Yorzinsky, J., Penkunas, M., Platt, M.L. and Coss, R.G. (2014) Dangerous Animals Capture and Maintain Attention in Humans. Evolutionary Psychology, 12, 534-548.
https://doi.org/10.1177/147470491401200304
[99]  Langeslag, S.J.E. and van Strien, J.W. (2018) Early Visual Processing of Snakes and Angry Faces: An ERP Study. Brain Research, 1678, 297-303.
https://doi.org/10.1016/j.brainres.2017.10.031
[100]  Adolphs, R. (2013) The Biology of Fear. Current Biology, 23, R79-R93.
https://doi.org/10.1016/j.cub.2012.11.055
[101]  Servonnet, A., Hernandez, G., El Hage, C., Rompré, P.-P. and Samaha, A.-N. (2020) Optogenetic Activation of the Basolateral Amygdala Promotes Both Appetitive Conditioning and the Instrumental Pursuit of Reward Cues. Journal of Neuroscience, 40, 1732-1743.
https://doi.org/10.1523/JNEUROSCI.2196-19.2020
[102]  Contreras-Alcantara, S., Baba, K. and Tosini, G. (2012) Removal of Melatonin Receptor Type 1 Induces Insulin Resistance in the Mouse. Obesity, 18, 1861-1863.
https://doi.org/10.1038/oby.2010.24
[103]  Garcia-Saenz, A., Sánchez de Miguel, A., Espinosa, A., Valentin, A., Aragonés, N., Llorca, J., Amiano, P., Sánchez, V.M., Guevara, M., Capelo, R., Tardón, A., Peiró- Perez, R., Jiménez-Moleón, J.J., Roca-Barceló, A., Pérez-Gómez, B., Dierssen-Sotos, T., Fernández-Villa, T., Moreno-Iribas, C., Moreno, V., García-Pérez, J., Castano- Vinyals, G., Pollán, M., Aubé, M. and Kogevinas, M. (2018) Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). Environmental Health Perspectives, 126, Article ID: 047011.
https://doi.org/10.1289/EHP1837
[104]  James, P., Bertrand, K.A., Hart, J.E., Schernhammer, E.S., Tamimi, R.T. and Laden, F. (2017) Outdoor Light at Night and Breast Cancer Incidence in Nurses’ Health Study II. Environmental Health Perspectives, 125, Article ID: 087010.
https://doi.org/10.1289/EHP935
[105]  Nash, T., Chow, E.S., Law, A.D., Fu, S.D., Fuszara, E., Bilska, A., Bebas, P., Kretzschmar, D. and Giebultowicz, J.M. (2019) Daily Blue-Light Exposure Shortens Lifespan and Causes Brain Neurodegeneration in Drosophila. NPJ Aging and Mechanisms of Disease, 5, 8.
https://doi.org/10.1038/s41514-019-0038-6
[106]  Ondrusova, K., Fatehi, M., Bayr, A., Czarnecka, Z., Long, W., Suzuki, K., Campbell, S., Philippaert, K., Hubert, M., Tredget, E., Kwan, P., Touret, N., Wabitsch, M., Lee, K.Y. and Light, P.E. (2017) Subcutaneous White Adipocytes Express a Light Sensitive Signalling Pathway Mediated via a Melanopsin/TPRC Axis. Scientific Reports, 7, Article No. 16332.
https://doi.org/10.1038/s41598-017-16689-4
[107]  Ratnayake, K., Payton, J.L., Harshana Lakmal, O. and Karunarathne, A. (2018) Blue Light Excited Retinal Intercepts Cellular Signalling. Scientific Reports, 8, Article No. 10207.
https://doi.org/10.1038/s41598-018-28254-8
[108]  Enwemeka, C.S., Bumah, V.V. and Santos Masson-Myers, D. (2020) Light as a Potential Treatment for Pandemic Coronavirus Infections: A Perspective. Journal of Photochemistry and Photobiology B: Biology, 207, Article ID: 111891.
https://doi.org/10.1016/j.jphotobiol.2020.111891
[109]  Sommer, A.P. (2019) Mitochondrial Cytochrome C Oxidase Is Not the Primary Acceptor for Near Infrared Light—It Is Mitochondrial Bound Water: The Principles of Low-Level Light Therapy. Annals of Translational Medicine, 7, S13.
https://doi.org/10.21037/atm.2019.01.43
[110]  Allen, M. and Friston, K. (2018) From Cognitivism to Autopoiesis: Towards a Com- putational Framework for the Embodied Mind. Synthese, 195, 2459-2482.
https://doi.org/10.1007/s11229-016-1288-5
[111]  Parr, T. and Friston, K.J. (2017) The Active Construction of the Visual World. Neuropsychologia, 104, 92-101.
https://doi.org/10.1016/j.neuropsychologia.2017.08.003
[112]  Soares, S.C., Lindström, B., Esteves, F. and Öhman, A. (2014) The Hidden Snake in the Grass: Superior Detection of Snakes in Challenging Attentional Conditions. PLoS ONE, 9, e114724.
https://doi.org/10.1371/journal.pone.0114724

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133