|
- 2002
Quantitative Structure-Activity Relationship of Tricyclic Carbapenems: Application of Artificial Intelligence Methods for Bioactivity PredictionKeywords: QSAR, tricyclic carbapenem derivatives, antibiotic ac-tivity, articial neural networks, genetic algorithms Abstract: Sa?etak Resistance to antibiotics in bacterial population has widened the interest of Scientific community for development of novel therapeutic compounds. Penicillins and cephalosporins which share the β-lactam structural moiety form the most abundant group of antibiotics on the market. Their recently developed tricyclic analogues have shown remarkable bioactivity towards broad spectrum of bacterial species. In a series of 52 tricyclic carbapenems represented by the 180’dimensional ?spectrum-like? representation we studied the structure-activity relationships by application of an artificial neural network. The molecular structure representation by spec-tral intensity values served as inputs into the counter-propagation artificial neural network (CP-ANN). SIMPLEX optimization was carried out to obtain the best ANN model and a genetic algorithm approach was subsequently used to simultaneously minimize the number of variables. Thus, a search for the substituents that predominantly influence the experimental bioactivity was performed. The constructed CP-ANN model yielded bioactivity values predictions with a correlation coefficient of 0.88, with their values extended over 4 orders of magnitude. The list of substituents selected by our automatic procedure can be compared with the data obtained by protein crystallography of the β-lactam inhibitors in complex with D,D-peptidase enzyme
|