全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Identification of new process-related impurity in the key intermediate in the synthesis of TCV-116

DOI: 10.2478/acph-2019-0006

Keywords: candesartan cilexetil (TCV-116), diastereoisomers, synthesis, impurity, HRMS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sa?etak Development of safe and effective drugs requires complete impurity evaluation and, therefore, knowledge about the formation and elimination of impurities is necessary. During impurity profiling of a key intermediate during synthesis of candesartan cilexetil (1-(((cyclohexyloxy)carbonyl)oxy)ethyl 1-((2'-(2H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl)methyl)-2-ethoxy-1H-benzo[d]imidazole-7-carboxylate, TCV-116), a novel compound, which had not been reported previously, was observed. Structural elucidation of impurity was achieved by liquid chromatography hyphenated to different high resolution mass analyzers. Based on exact mass measurements and fragmentation pattern, a chloroalkyl carbonate ester analogue of the intermediate was identified. Structure of the impurity was confirmed by mass spectrometric and NMR analyses of the target substance. Identified impurity could represent a hazard if it is transferred to the final API stage and its presence should be kept below allowed limits. Further investigation could reveal whether bis(1-chloroethyl) carbonate is a precursor to impurity formation. Therefore, synthesis should be regulated so as to minimize impurity production. Analysis of the final product indicated that the amount of impurity did not exceed 50 mg L-1, which represents the detection limit, determined according to the signal/noise ratio

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133