全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Localization of Ringed Spaces

DOI: 10.4236/apm.2011.15045, PP. 250-263

Keywords: Localization, Fibered Product, Spec, Relative Scheme

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let X be a ringed space together with the data Μ of a set Μ of prime ideals of ΟΧx for each point x∈Χ . We introduce the localization of (X,M') , which is a locally ringed space Y and a map of ringed spaces YΧ enjoying a universal property similar to the localization of a ring at a prime ideal. We use this to prove that the category of locally ringed spaces has all inverse limits, to compare them to the inverse limit in ringed spaces, and to construct a very general Spec functor. We conclude with a discussion of relative schemes.

References

[1]  M. Hakim, “Topos Annelés et Schémas Relatifs. Ergebnisse der Mathematik und ihrer Grenzgebiete,” Springer- Verlag, Berlin, 1972.
[2]  R. Hartshorne, “Algebraic Geometry,” Springer-Verlag Berlin, 1977.
[3]  H. Becker, Faserprodukt in LRS. http://www.unibonn.de/~habecker/Faserprodukt―in―LRS.pdf.
[4]  L. Illusie, “Complexe Cotangent et Deformations I. L.N.M. 239,” Springer-Verlag, Berlin, 1971.
[5]  A. Grothendieck and J. Dieudonné, “éléments de Géométrie Al-gébrique,” Springer, Berlin, 1960.
[6]  J. Giraud, “Cohomolo-gie non Abélienne,” Springer, Berlin, 1971.
[7]  A. Vistoli, “Notes on Grothendieck Topologies, Fibered Categories, and Descent Theory,” Citeseer, Princeton 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133