全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interior and Exterior Differential Systems for Lie Algebroids

DOI: 10.4236/apm.2011.15044, PP. 245-249

Keywords: Vector Bundle, Lie Algebroid, Interior Differential System, Exterior Differential Calculus, Exterior Differential System

Full-Text   Cite this paper   Add to My Lib

Abstract:

A theorem of Maurer-Cartan type for Lie algebroids is presented. Suppose that any vector subbundle of a Lie algebroid is called interior differential system (IDS) for that Lie algebroid. A theorem of Frobenius type is obtained. Extending the classical notion of exterior diffential system (EDS) to Lie algebroids, a theorem of Cartan type is obtained.

References

[1]  J. Grabowski and P. Urbanski, “Lie Algebroids and Pois-son-Nijenhuis Structures,” Reports on Mathematical Physics, Vol. 40, No. 2, 1997, pp. 196-208. doi:10.1016/S0034-4877(97)85916-2
[2]  C. M. Marle, “Lie Algebroids and Lie Pseudoalgebras,” Mathematics & Physical Sciences, Vol. 27, No. 2, 2008, pp. 97-147.
[3]  L. I. Nicolescu, “Lectures on the Geometry of Manifolds,” World Scientific, Singapore, 1996. doi:10.1142/9789814261012
[4]  M. de Leon, “Methods of Differential Geometry in Analitical Mechanics,” North-Holland, Amsterdam, 1989.
[5]  R. L. Bryant, S. S. Chern, R. B. Gard-ner, H. L. Goldschmidt and P. A. Griffiths, “Exterior Differen-tial Systems,” Springer-Verlag, New York, 1991.
[6]  T. A. Ivey and J. M. Landsberg, “Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Sys-tems,” American Mathematical Society, Providence, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133