全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Interdigitated Flow Channel on a Proton Exchange Membrane Fuel Cell Investigated Using the Response Surface Methodology

DOI: 10.21278/TOF.43205

Keywords: Optimization, PEM fuel cell, response surface methodology, computational fluid dynamics, interdigitated flow channel, rib width-to-channel width ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sa?etak Performance of the proton exchange membrane (PEM) fuel cell depends on the operating pressure, operating temperature, stoichiometric ratio of reactant gases, relative humidity, and rib width-to-channel width ratio (R:C), shape of the flow channel, and the number of passes on the flow channel. The effect of pressure, temperature, inlet reactant mass flow rate and rib width-to-channel width ratios of 1:1, 1:2, 2:1, and 2:2 on the power density of a PEM fuel cell with interdigitated flow channel of 25 cm^2 active area of was considered in this study. The response surface methodology was used for optimizing the four above mentioned parameters to find the optimum power density of the PEM fuel cell. The analysis of variance (ANOVA) was used to find the contribution of each parameter to the performance of the PEM fuel cell. Further, numerical results were compared with the experimental validation of the PEM fuel cell. Numerical results of power densities of interdigitated flow channel with R:C ratios of 1:1, 1:2, 2:1, and 2:2 were found to be 0.272, 0.292, 0.267, and 0.281 W/cm^2 and the corresponding experimental results of power density were 0.261, 0.266, 0.254, and 0.264 W/cm^2, respectively

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133