全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

On-Line Workpiece Hardness Monitoring in Stone Machining

DOI: 10.21278/TOF.43404

Keywords: stone drilling, hardness classification, process monitoring, signal analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sa?etak The application of four types of process signals in the indirect on-line monitoring of stone hardness has been analysed in this paper. Cutting forces, servomotor currents, vibration and acoustic emission signals were measured during the drilling of three types of stones characterised by different hardness and heterogeneity values. A group of features were extracted from each signal from the time and frequency domain. Their capacity to correctly classify stone hardness was analysed using an artificial neural network classifier. Stone samples were drilled with new drill bits and drill bits worn to three different wear levels in order to analyse the influence of tool wear on the hardness classification process. Nine combinations of cutting parameters were applied for each drill wear level and stone type. Features extracted from the vibration signals obtained the best results in the stone hardness classification. The results indicate their potential industrial application, since they have achieved a high classification precision regardless of the drill bit wear level

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133