|
- 2020
Effect of Geometric Nonlinearity on Membrane Roof Stability in Air FlowDOI: https://doi.org/10.1155/2020/2305145 Abstract: Membrane materials are widely used in construction engineering with small mass and high flexibility, which presents strong geometric nonlinearity in vibration. In this paper, an improved multiscale perturbation method is used to solve the aerostatics stability of membrane roofs on closed and open structures by quantifying the effect of geometric nonlinearity on the single-mode aeroelastic instability wind velocity. Results show that the critical wind velocities of two models are smaller when the geometrical nonlinearity of the membrane material is neglected. In addition, under normal wind load, the influence of geometrical nonlinearity of the membrane on the aerodynamic stability of the roof can be neglected. However, under strong wind load, when the roof deformation reaches 3% of the span, the influence of geometric nonlinearity should be considered and the influence increases with the decrease of transverse and downwind span of the membrane roof. The results obtained in this paper have an important theoretical reference value for the design membrane structures
|