全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

Extensive In Silico Analysis of ATL1 Gene?:?Discovered Five Mutations That May Cause Hereditary Spastic Paraplegia Type 3A

DOI: https://doi.org/10.1155/2020/8329286

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Hereditary spastic paraplegia type 3A (SPG3A) is a neurodegenerative disease inherited type of Hereditary spastic paraplegia (HSP). It is the second most frequent type of HSP which is characterized by progressive bilateral and mostly symmetric spasticity and weakness of the legs. SPG3A gene mutations and the phenotype-genotype correlations have not yet been recognized. The aim of this work was to categorize the most damaging SNPs in ATL1 gene and to predict their impact on the functional and structural levels by several computational analysis tools. Methods. The raw data of ATL1 gene were retrieved from dbSNP database and then run into numerous computational analysis tools. Additionally; we submitted the common six deleterious outcomes from the previous functional analysis tools to I-mutant 3.0 and MUPro, respectively, to investigate their effect on the structural level. The 3D structure of ATL1 was predicted by RaptorX and modeled using UCSF Chimera to compare the differences between the native and the mutant amino acids. Results. Five nsSNPs out of 249 were classified as the most deleterious (rs746927118, rs979765709, rs119476049, rs864622269, and rs1242753115). Conclusions. In this study, the impact of nsSNPs in the ATL1 gene was investigated by various in silico tools that revealed five nsSNPs (V67F, T120I, R217Q, R495W, and G504E) are deleterious SNPs, which have a functional impact on ATL1 protein and, therefore, can be used as genomic biomarkers specifically before 4 years of age; also, it may play a key role in pharmacogenomics by evaluating drug response for this disabling disease

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133