全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

The Improved Value-at-Risk for Heteroscedastic Processes and Their Coverage Probability

DOI: https://doi.org/10.1155/2020/7638517

Full-Text   Cite this paper   Add to My Lib

Abstract:

A risk measure commonly used in financial risk management, namely, Value-at-Risk (VaR), is studied. In particular, we find a VaR forecast for heteroscedastic processes such that its (conditional) coverage probability is close to the nominal. To do so, we pay attention to the effect of estimator variability such as asymptotic bias and mean square error. Numerical analysis is carried out to illustrate this calculation for the Autoregressive Conditional Heteroscedastic (ARCH) model, an observable volatility type model. In comparison, we find VaR for the latent volatility model i.e., the Stochastic Volatility Autoregressive (SVAR) model. It is found that the effect of estimator variability is significant to obtain VaR forecast with better coverage. In addition, we may only be able to assess unconditional coverage probability for VaR forecast of the SVAR model. This is due to the fact that the volatility process of the model is unobservable

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133