全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

A Fully Automated Adjustment of Ensemble Methods in Machine Learning for Modeling Complex Real Estate Systems

DOI: https://doi.org/10.1155/2020/5287263

Full-Text   Cite this paper   Add to My Lib

Abstract:

The close relationship between collateral value and bank stability has led to a considerable need to a rapid and economical appraisal of real estate. The greater availability of information related to housing stock has prompted to the use of so-called big data and machine learning in the estimation of property prices. Although this methodology has already been applied to the real estate market to identify which variables influence dwelling prices, its use for estimating the price of properties is not so frequent. The application of this methodology has become more sophisticated over time, from applying simple methods to using the so-called ensemble methods and, while the estimation capacity has improved, it has only been applied to specific geographical areas. The main contribution of this article lies in developing an application for the entire Spanish market that fully automatically provides the best model for each municipality. Real estate property prices in 433 municipalities are estimated from a sample of 790,631 dwellings, using different ensemble methods based on decision trees such as bagging, boosting, and random forest. The results for estimating the price of dwellings show a good performance of the techniques developed, in terms of the error measures, with the best results being achieved using the techniques of bagging and random forest

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133