全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 

Identification of Weakly Pitch-Shifted Voice Based on Convolutional Neural Network

DOI: https://doi.org/10.1155/2020/8927031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pitch shifting is a common voice editing technique in which the original pitch of a digital voice is raised or lowered. It is likely to be abused by the malicious attacker to conceal his/her true identity. Existing forensic detection methods are no longer effective for weakly pitch-shifted voice. In this paper, we proposed a convolutional neural network (CNN) to detect not only strongly pitch-shifted voice but also weakly pitch-shifted voice of which the shifting factor is less than ±4 semitones. Specifically, linear frequency cepstral coefficients (LFCC) computed from power spectrums are considered and their dynamic coefficients are extracted as the discriminative features. And the CNN model is carefully designed with particular attention to the input feature map, the activation function and the network topology. We evaluated the algorithm on voices from two datasets with three pitch shifting software. Extensive results show that the algorithm achieves high detection rates for both binary and multiple classifications

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133