全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于AE-BNDNN模型的入侵检测方法

Keywords: 入侵检测,自编码器,深度神经网络,批量归一化,网格搜索

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 基于深度学习的网络入侵检测系统中大量的冗余数据特征会加大模型的训练时间并降低训练效果,针对此问题,提出了AE-BNDNN入侵检测模型.首先利用自编码器网络(Auto-Encoder,AE)对入侵检测数据进行特征降维,去除冗余特征,而后在深度神经网络隐藏层添加批量规范化层,作为训练入侵检测数据特征降维后的分类器,最后采用多层网格搜索算法对AE-BNDNN模型参数进行自动优化,寻找模型的最优参数.在NSL-KDD数据集上的实验结果表明,采用多层网格搜索算法优化的AE-BNDNN模型取得了较高的分类准确率和训练速度

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133