|
中山大学学报(自然科学版) 2019
一种利用相关性度量的不确定数据频繁模式挖掘Keywords: 数据挖掘,频繁模式,加权模式,相关模式,不确定数据 Abstract: 摘要 大多数不确定数据库中频繁项集挖掘算法都是基于支持度的限制来剪枝组合搜索空间,因而得到关联性很弱的频繁项集并且对加权相关模式的挖掘效果不显著.本文针对加权不确定数据,提出一种新的策略:基于相关性度量的不确定数据频繁模式挖掘(UFPMCM).首先,本文采用一种新的树结构和一个针对树结构的新的度量来提高挖掘性能.其次,提出了新的不确定置信度度量来挖掘不确定数据库中的相关模式.最后,利用UFPM算法快速挖掘出相关性强的频繁模式.实验研究结果表明所提出的策略产生了较少但极具价值的模式且其效率优于同类算法
|