全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HR-DCGAN方法的帕金森声纹样本扩充及识别研究

Keywords: 帕金森病,HR-DCGAN,语谱图,样本扩充,VGG16

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 声纹作为人类重要的生物特征,可应用于帕金森等疾病的判别,但现存的患者声纹数据集及样本偏少,故提出HR-DCGAN(High Resolution Deep Convolutional Generative Adversarial Network)进行样本扩充,进而采用深度学习方法区分帕金森患者和健康人.HR-DCGAN通过增加网络层数并结合特征匹配方法生成高分辨的语谱图,依据结构相似度指标(Structural Similarity Index,SSIM)筛选出高相似度的语谱图以扩充样本.构建VGG16提取声纹特征并分类有效地提高识别准确率,使用Dropout方法抑制过拟合问题进而达到正则化效果.在Sakar数据集上进行了多种特征提取方法,多分类方法的对比实验,结果表明HR-DCGAN-VGG16混合模型能够获得最高声纹识别准确率90.5%和特异性91%,能有效区分帕金森患者和健康人,解决了少量声纹数据下对帕金森患者的早期高效筛查问题

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133