全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Hydroquinone-Based Anion Receptors for Redox-Switchable Chloride Binding

DOI: https://doi.org/10.3390/chemistry1010007

Full-Text   Cite this paper   Add to My Lib

Abstract:

A series of chloride receptors has been synthesized containing an amide hydrogen bonding site and a hydroquinone motif. It was anticipated that oxidation of the hydroquinone unit to quinone would greatly the diminish chloride binding affinity of these receptors. A conformational switch is promoted in the quinone form through the formation of an intramolecular hydrogen bond between the amide and the quinone carbonyl, which blocks the amide binding site. The reversibility of this oxidation process highlighted the potential of these systems for use as redox-switchable receptors. 1H-NMR binding studies confirmed stronger binding capabilities of the hydroquinone form compared to the quinone; however, X-ray crystal structures of the free hydroquinone receptors revealed the presence of an analogous inhibiting intramolecular hydrogen bond in this state of the receptor. Binding studies also revealed interesting and contrasting trends in chloride affinity when comparing the two switch states, which is dictated by a secondary interaction in the binding mode between the amide carbonyl and the hydroquinone/quinone couple. Additionally, the electrochemical properties of the systems have been explored using cyclic voltammetry and it was observed that the reduction potential of the system was directly related to the expected strength of the internal hydrogen bond. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133