全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Cell Density Conversion of Hydrolysed Waste Cooking Oil Fatty Acids Into Medium Chain Length Polyhydroxyalkanoate Using Pseudomonas putida KT2440

DOI: https://doi.org/10.3390/catal9050468

Full-Text   Cite this paper   Add to My Lib

Abstract:

Waste cooking oil (WCO) is a major pollutant, primarily managed through incineration. The high cell density bioprocess developed here allows for better use of this valuable resource since it allows the conversion of WCO into biodegradable polymer polyhydroxyalkanoate (PHA). WCO was chemically hydrolysed to give rise to a mixture of fatty acids identical to the fatty acid composition of waste cooking oil. A feed strategy was developed to delay the stationary phase, and therefore achieve higher final biomass and biopolymer (PHA) productivity. In fed batch (pulse feeding) experiments Pseudomonas putida KT2440 achieved a PHA titre of 58 g/l (36.4% of CDW as PHA), a PHA volumetric productivity of 1.93 g/l/h, a cell density of 159.4 g/l, and a biomass yield of 0.76 g/g with hydrolysed waste cooking oil fatty acids (HWCOFA) as the sole substrate. This is up to 33-fold higher PHA productivity compared to previous reports using saponified palm oil. The polymer (PHA) was sticky and amorphous, most likely due to the long chain monomers acting as internal plasticisers. High cell density cultivation is essential for the majority of industrial processes, and this bioprocess represents an excellent basis for the industrial conversion of WCO into PHA. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133