全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adsorption of Ammonium Nitrogen from Aqueous Solution on Chemically Activated Biochar Prepared from Sorghum Distillers Grain

DOI: https://doi.org/10.3390/app9235249

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemically activated biochars prepared from sorghum distillers grain using two base activators (NaOH and KOH) were investigated for their adsorption properties with respect to ammonium nitrogen from aqueous solution. Detailed characterizations, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG), and specific surface area analyses, were carried out to offer a broad evaluation of the prepared biochars. The results showed that the NaOH- and KOH-activated biochars exhibited significantly enhanced adsorption capacity, by 2.93 and 4.74 times, respectively, in comparison with the pristine biochar. Although the NaOH-activated biochar possessed larger specific surface area (132.8 and 117.7 m 2/g for the NaOH- and KOH-activated biochars, respectively), the KOH-activated biochar had higher adsorption capacity owing to its much higher content of functional groups. The adsorption kinetics and isotherms of the KOH-activated biochar at different temperatures were further studied. The biochar had a maximum adsorption capacity of 14.34 mg/g at 45 °C, which was satisfactory compared with other biochars prepared using different feedstocks. The adsorption process followed pseudo-second-order kinetics, and chemical adsorption was the rate-controlling step. The equilibrium data were consistent with the Freundlich isotherm, and the thermodynamic parameters suggested that the adsorption process was endothermic and spontaneous. Consequently, this work demonstrates that chemically activated biochar from sorghum distillers grain is effective for ammonium nitrogen removal. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133