全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Evaporable Getter Ti-V-Hf-Zr Film Coating on Laser-Treated Aluminum Alloy Substrate for Electron Cloud Mitigation

DOI: https://doi.org/10.3390/coatings9120839

Full-Text   Cite this paper   Add to My Lib

Abstract:

For improving the vacuum and mitigating the electron clouds in ultra-high vacuum chamber systems of high-energy accelerators, the deposition of Ti-V-Hf-Zr getter film on a laser-treated aluminum alloy substrate was proposed and exploited for the first time in this study. The laser-treated aluminum surface exhibits a low secondary electron yield (SEY), which is even lower than 1 for some selected laser parameters. Non-evaporable getter (NEG) Ti-V-Hf-Zr film coatings were prepared using the direct current (DC) sputtering method. The surface morphology, surface roughness and composition of Ti-V-Hf-Zr getter films were characterized and analyzed. The maximum SEY of unactivated Ti-V-Hf-Zr getter film on laser-treated aluminum alloy substrates ranged from 1.10 to 1.48. The X-ray photoelectron spectroscopy (XPS) spectra demonstrate that the Ti-V-Hf-Zr coated laser-treated aluminum alloy could be partially activated after being heated at 100 and 150 °C, respectively, for 1 h in a vacuum and also used as a pump. The results were demonstrated initially and the potential application should be considered in future particle accelerators. View Full-Tex

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133