全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进OTSU算法的快速作物图像分割

Keywords: 图像分割,粒子群算法,最大类间方差法,超绿图像,学习因子,惯性权重因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对OTSU算法时间复杂度高、实时性差等缺点,结合粒子群算法(particle swarm optimization,简称PSO)提出了一种新的自适应动态参数控制PSO+OTSU算法。通过自适应动态调整惯性权重因子和学习因子,让处在不同位置的粒子做自己最擅长的事情,从而达到算法满足实时性的目的。通过研究自然农田环境下作物图像,提出了一种改进超绿作物图像灰度化方法。结果表明,提出的自适应算法比标准PSO+OTSU算法运行时间缩短了12.7%,错分率方差缩小了26.3%,具有更好的实时性和稳定性。最后在不同光照、不同复杂背景、不同作物植株条件下进行验证试验,都取得了很好的分割效果,说明改进算法同时具有很强的健壮性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133