全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Faster-RCNN的花生害虫图像识别研究

Keywords: Faster-RCNN,ResNet-50模型,花生害虫,图像识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现花生害虫图像的准确分类,共收集花生主要害虫图片2 038张,针对目前在基于Faster-RCNN的图像识别领域较为成熟的VGG-16和ResNet-50这2种网络模型进行对比研究,并针对ResNet-50模型参数进行调整,提出了基于学习率、训练集和测试集以及验证集的比例选择、迭代次数等参数改进的ResNet-50卷积神经网络的模型。结果表明:该模型可以准确高效地提取出花生主要害虫的多层特征图像,在平均识别率上,经过改进的 ResNet-50 网络模型在识别花生害虫图像上优于ResNet-50原始网络模型。该模型可以准确地分类花生主要害虫图像,可在常规情况下实现花生害虫的图像识别

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133