We examine a series of developments in geometry.
These include the Theorem of Bézout. We then examine how several developments
in geometry can be used in application to Quantum mechanics.
References
[1]
Allan, G. R. (2011). Introduction to Banach Spaces and Algebras. Oxford: Oxford University Press.
[2]
Apéry, F. (1987). Models of the Real Projective Plane. Wiesbaden: Vieweg, Braunschweig. https://doi.org/10.1007/978-3-322-89569-1
[3]
Bézout, é. (2006). General Theory of Algebraic Equations. Princeton, NJ: Princeton University Press. Translated by Eric Feron from Theorie général des équations algébrique, Paris, 1770.
[4]
Brieskorn, E., & Knorrer, H. (1986). Plane Algebraic Curves. New York: Springer. https://doi.org/10.1007/978-3-0348-5097-1
[5]
Bub, J. (1998). Interpreting the Quantum World. Cambridge: Cambridge University Press.
[6]
Dickson, W. M. (1997). Quantum Chance and Nonlocality, Probability and Non-Locality in the Interpretations of Quantum Mechanics. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511524738
[7]
Gardner, M. (1970). The Fantastic Combinations of John Conway’s New Solitary Game “Life”. Scientific American, 223, 120-123. https://doi.org/10.1038/scientificamerican1170-116
[8]
Gibson, C. (1998). Elementary Geometry of Algebraic Curves. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139173285
[9]
Hartshorne, R. (1997). Geometry: Euclid and Beyond. New York: Springer Verlag.
[10]
Hulek, K. (2003). Elementary Algebraic Geometry. Providence, RI: American Mathematical Society. https://doi.org/10.1090/stml/020
[11]
Jost, J. (2008). Riemannian Geometry and Geometric Analysis (5th ed.). Berlin Heidel-berg: Springer-Verlag.
[12]
Kemper, G. (2011). A Course in Commutative Algebra. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-03545-6
[13]
Leonard, H. S. (1969). The Logic of Existence. Philosophical Studies, 7, 49-64. https://doi.org/10.1007/BF02221764
[14]
Noether, E. S. (1921). Idealtheorie in Ringbereichen. Mathematische Annalen, 90, 223-261.
[15]
O’Neill, B. (1966). Elementary Differential Geometry. Boston, MA: Academic Press.
[16]
t’Hooft, G. (2016). The Cellular Automaton Interpretation of Quantum Mechanics. Berlin: Springer. https://doi.org/10.1007/978-3-319-41285-6
[17]
Veblen, O., & Young, J. W. (1938). Projective Geometry Volume I. Boston, MA: Ginn and Company.