全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Abstract Geometry and Its Applications in Quantum Mechanics

DOI: 10.4236/ojpp.2020.104029, PP. 423-426

Keywords: Rings, Polynomials, Theorem of Bézout, Quantum Mechanics

Full-Text   Cite this paper   Add to My Lib

Abstract:

We examine a series of developments in geometry. These include the Theorem of Bézout. We then examine how several developments in geometry can be used in application to Quantum mechanics.

References

[1]  Allan, G. R. (2011). Introduction to Banach Spaces and Algebras. Oxford: Oxford University Press.
[2]  Apéry, F. (1987). Models of the Real Projective Plane. Wiesbaden: Vieweg, Braunschweig.
https://doi.org/10.1007/978-3-322-89569-1
[3]  Bézout, é. (2006). General Theory of Algebraic Equations. Princeton, NJ: Princeton University Press. Translated by Eric Feron from Theorie général des équations algébrique, Paris, 1770.
[4]  Brieskorn, E., & Knorrer, H. (1986). Plane Algebraic Curves. New York: Springer.
https://doi.org/10.1007/978-3-0348-5097-1
[5]  Bub, J. (1998). Interpreting the Quantum World. Cambridge: Cambridge University Press.
[6]  Dickson, W. M. (1997). Quantum Chance and Nonlocality, Probability and Non-Locality in the Interpretations of Quantum Mechanics. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511524738
[7]  Gardner, M. (1970). The Fantastic Combinations of John Conway’s New Solitary Game “Life”. Scientific American, 223, 120-123.
https://doi.org/10.1038/scientificamerican1170-116
[8]  Gibson, C. (1998). Elementary Geometry of Algebraic Curves. Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9781139173285
[9]  Hartshorne, R. (1997). Geometry: Euclid and Beyond. New York: Springer Verlag.
[10]  Hulek, K. (2003). Elementary Algebraic Geometry. Providence, RI: American Mathematical Society.
https://doi.org/10.1090/stml/020
[11]  Jost, J. (2008). Riemannian Geometry and Geometric Analysis (5th ed.). Berlin Heidel-berg: Springer-Verlag.
[12]  Kemper, G. (2011). A Course in Commutative Algebra. Berlin: Springer-Verlag.
https://doi.org/10.1007/978-3-642-03545-6
[13]  Leonard, H. S. (1969). The Logic of Existence. Philosophical Studies, 7, 49-64.
https://doi.org/10.1007/BF02221764
[14]  Noether, E. S. (1921). Idealtheorie in Ringbereichen. Mathematische Annalen, 90, 223-261.
[15]  O’Neill, B. (1966). Elementary Differential Geometry. Boston, MA: Academic Press.
[16]  t’Hooft, G. (2016). The Cellular Automaton Interpretation of Quantum Mechanics. Berlin: Springer.
https://doi.org/10.1007/978-3-319-41285-6
[17]  Veblen, O., & Young, J. W. (1938). Projective Geometry Volume I. Boston, MA: Ginn and Company.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133