全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

First Development of a Biotechnological Ferment Based on a Consorsium of the Genus Bacillus for the Optimization of the Fermentation Process of Cassava Tubers

DOI: 10.4236/aim.2020.1010041, PP. 563-574

Keywords: Consorsium, Fermentation Process, Cassava, Strains

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to its nutritional values, cassava has become an unavailable food and is one of the essential foods in the Republic of Congo. Fermentation of tubers is still traditional. Fiftyrod-shaped spore-forming bacteria were screened and carried out in batch mode for the fermentation abilities of cassava tubers in order to develop biotechnological starter. The Penetrometry Index (PI) has been used to screen bacteria and 16SrRNA as well as fibEone step multiplex PCR which were used to molecularly identify isolates. Emulsification Index, Proteolytic as well as amylolytic, and cellulolytic activities of some strains were quantitatively evaluated for prooving orgaleptic characterics. As results Bacillus subtilis (MT994787), Bacillus subtillis (MT994789), Bacillus tequilensis (MT994788), Bacillus safensis, and Bacillus subtilis have been identified. Single isolates were able to ferment tubers in 48 h and 72 hours meanwhile Bacillus consortia were able to shift fermentation of tubers from 48 hours to 24 hours. The consortium could be used as the major bacterial starters. Strains were associated with the ability to secrete biomolecules including biosurfactants, protease, amylase and cellulase.

References

[1]  Kayath, C.A., Nguimbi, E., Goma-Tchimbakala, J., Mamonékéné, V., Lebonguy, A.A. and Ahombo, G. (2016) Towards the Understanding of Fermented Food Biotechnology in Congo Brazzaville. Advance Journal of Food Science and Technology, 12, 593-602.
https://doi.org/10.19026/ajfst.12.3317
[2]  Ouoba, L.I.I., Vouidibio Mbozo, A.B., Thorsen, L., Anyogu, A., Nielsen, D.S., Kobawila, S.C., et al. (2015) Lysinibacillus louembei sp. nov., a Spore-Forming Bacterium Isolated from Ntoba Mbodi, Alkaline Fermented Leaves of Cassava from the Republic of the Congo. International Journal of Systematic and Evolutionary Microbiology, 65, 4256-4262.
https://doi.org/10.1099/ijsem.0.000570
[3]  Tsuji, A., Kozawa, M., Tokuda, K., Enomoto, T. and Koyanagi, T. (2018) Robust Domination of Lactobacillus sakei in Microbiota during Traditional Japanese Sake Starter Yamahai-Moto Fermentation and the Accompanying Changes in Metabolites. Current Microbiology, 75, 1498-1505.
https://doi.org/10.1007/s00284-018-1551-8
[4]  Du, R., Ge, J., Zhao, D., Sun, J., Ping, W. and Song, G. (2018) Bacterial Diversity and Community Structure during Fermentation of Chinese Sauerkraut with Lactobacillus casei 11MZ-5-1 by Illumina Miseq Sequencing. Letters in Applied Microbiology, 66, 55-62.
https://doi.org/10.1111/lam.12824
[5]  Zhu, L.X., Wang, G.Q., Xue, J.L., Gou, D.Q. and Duan, C.Q. (2017) Direct Stamp of Technology or Origin on the Genotypic and Phenotypic Variation of Indigenous Saccharomyces cerevisiae Population in a Natural Model of Boiled Grape Juice Fermentation into Traditional Msalais Wine in China. FEMS Yeast Research, 17, fow108.
https://doi.org/10.1093/femsyr/fow108
[6]  Amorim, J.C., Piccoli, R.H. and Duarte, W.F. (2018) Probiotic Potential of Yeasts Isolated from Pineapple and Their Use in the Elaboration of Potentially Functional Fermented Beverages. Food Research International, 107, 518-527.
https://doi.org/10.1016/j.foodres.2018.02.054
[7]  Jezewska-Frackowiak, J., Seroczynska, K., Banaszczyk, J., Jedrzejczak, G., Zylicz-Stachula, A. and Skowron, P.M. (2018) The Promises and Risks of Probiotic Bacillus Species. Acta Biochimica Polonica, 65, 509-519.
https://doi.org/10.18388/abp.2018_2652
[8]  Giles, J.A.D., Oliosi, G., Rodrigues, W.P., Braun, H., Ribeiro-Barros, A.I. and Partelli, F.L. (2018) Agronomic Performance and Genetic Divergence between Genotypes of Manihot esculenta. The Anais da Academia Brasileira de Ciências, 90, 3639-3648.
https://doi.org/10.1590/0001-3765201820180099
[9]  Pinto-Zevallos, D.M., Pareja, M. and Ambrogi, B.G. (2016) Current Knowledge and Future Research Perspectives on Cassava (Manihot esculenta Crantz) Chemical Defenses: An Agroecological View. Phytochemistry, 130, 10-21.
https://doi.org/10.1016/j.phytochem.2016.05.013
[10]  Jampaphaeng, K., Ferrocino, I., Giordano, M., Rantsiou, K., Maneerat, S. and Cocolin, L. (2018) Microbiota Dynamics and Volatilome Profile during Stink Bean Fermentation (Sataw-Dong) with Lactobacillus plantarum KJ03 as a Starter Culture. Food Microbiology, 76, 91-102.
https://doi.org/10.1016/j.fm.2018.04.012
[11]  Janssen, D., Eisenbach, L., Ehrmann, M.A. and Vogel, R.F. (2018) Assertiveness of Lactobacillus sakei and Lactobacillus curvatus in a Fermented Sausage Model. International Journal of Food Microbiology, 285, 188-197.
https://doi.org/10.1016/j.ijfoodmicro.2018.04.030
[12]  Wang, P., Wu, Q., Jiang, X., Wang, Z., Tang, J. and Xu, Y. (2017) Bacillus licheniformis Affects the Microbial Community and Metabolic Profile in the Spontaneous Fermentation of Daqu Starter for Chinese Liquor Making. International Journal of Food Microbiology, 250, 59-67.
https://doi.org/10.1016/j.ijfoodmicro.2017.03.010
[13]  Zhang, L., Huang, J., Zhou, R. and Wu, C. (2017) Evaluating the Feasibility of Fermentation Starter Inoculated with Bacillus amyloliquefaciens for Improving Acetoin and Tetramethylpyrazine in Baoning Bran Vinegar. International Journal of Food Microbiology, 255, 42-50.
https://doi.org/10.1016/j.ijfoodmicro.2017.05.021
[14]  Oguntoyinbo, F.A., Sanni, A.I., Franz, C.M. and Holzapfel, W.H. (2007) In Vitro Fermentation Studies for Selection and Evaluation of Bacillus Strains as Starter Cultures for the Production of Okpehe, a Traditional African Fermented Condiment. International Journal of Food Microbiology, 113, 208-218.
https://doi.org/10.1016/j.ijfoodmicro.2006.07.006
[15]  Ramos, C.L., de Sousa, E.S., Ribeiro, J., Almeida, T.M., Santos, C.C., Abegg, M.A., et al. (2015) Microbiological and Chemical Characteristics of Taruba, an Indigenous Beverage Produced from Solid Cassava Fermentation. Food Microbiology, 49, 182-188.
https://doi.org/10.1016/j.fm.2015.02.005
[16]  Fulazzaky, M.A., Abdullah, S. and Salim, M.R. (2016) Supporting Data for Identification of Biosurfactant-Producing Bacteria Isolated from Agro-Food Industrial Effluent. Data Brief, 7, 834-838.
https://doi.org/10.1016/j.dib.2016.03.058
[17]  Kimura, K. and Yokoyama, S. (2019) Trends in the Application of Bacillus in Fermented Foods. Current Opinion in Biotechnology, 56, 36-42.
https://doi.org/10.1016/j.copbio.2018.09.001
[18]  Amoa-Awua, W.K., Terlabie, N.N. and Sakyi-Dawson, E. (2006) Screening of 42 Bacillus Isolates for Ability to Ferment Soybeans into Dawadawa. International Journal of Food Microbiology, 106, 343-347.
https://doi.org/10.1016/j.ijfoodmicro.2005.08.016
[19]  Wang, J., Hu, Y., Qiu, C., Fan, H., Yue, Y., Jiao, A., et al. (2018) Immobilized Cells of Bacillus circulans ATCC 21783 on Palm Curtain for Fermentation in 5 L Fermentation Tanks. Molecules, 23, 2888.
https://doi.org/10.3390/molecules23112888
[20]  Yan, Z., Zheng, X.W., Han, B.Z., Han, J.S., Nout, M.J. and Chen, J.Y. (2013) Monitoring the Ecology of Bacillus during Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods. Journal of Microbiology and Biotechnology, 23, 614-622.
https://doi.org/10.4014/jmb.1211.11065
[21]  Anisha, A.H., Anandham, R., Kwon, S.W., Gandhi, P.I. and Gopal, N.O. (2015) Evaluation of Bacillus spp. as Dough Starters for Adhirasam—A Traditional Rice Based Fermented Food of Southern India. Brazilian Journal of Microbiology, 46, 1183-1191.
https://doi.org/10.1590/S1517-838246420140409
[22]  Ruiz-Barba, J.L., Caballero-Guerrero, B., Maldonado-Barragan, A. and Jimenez-Diaz, R. (2010) Coculture with Specific Bacteria Enhances Survival of Lactobacillus plantarum NC8, an Autoinducer-Regulated Bacteriocin Producer, in Olive Fermentations. Food Microbiology, 27, 413-417.
https://doi.org/10.1016/j.fm.2009.10.002
[23]  Benoit, I., van den Esker, M.H., Patyshakuliyeva, A., Mattern, D.J., Blei, F., Zhou, M., et al. (2015) Bacillus Subtilis Attachment to Aspergillus niger Hyphae Results in Mutually Altered Metabolism. Environmental Microbiology, 17, 2099-2113.
https://doi.org/10.1111/1462-2920.12564
[24]  Dai, J.Y., Yang, Y., Dong, Y.S. and Xiu, Z.L. (2020) Solid-State Co-Cultivation of Bacillus subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus Using Tobacco Waste Residue. Applied Biochemistry and Biotechnology, 190, 1092-1105.
https://doi.org/10.1007/s12010-019-03146-3
[25]  Kiran, G.S., Priyadharsini, S., Sajayan, A., Priyadharsini, G.B., Poulose, N. and Selvin, J. (2017) Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry. Frontiers in Microbiology, 8, 1138.
https://doi.org/10.3389/fmicb.2017.01138
[26]  Singh, V., Sharma, R. and Sharma, P. (2015) Isolation, Screening and Optimization of Amylase Producing Bacillus sp. from Soil. Asian Pacific Journal of Health Sciences, 2, 86-93.
https://doi.org/10.21276/apjhs.2015.2.3.19
[27]  Yu, P. and Xu, C. (2018) Production Optimization, Purification and Characterization of a Heat-Tolerant Acidic Pectinase from Bacillus sp. ZJ1407. International Journal of Biological Macromolecules, 108, 972-980.
https://doi.org/10.1016/j.ijbiomac.2017.11.012
[28]  Mahto, R.B., Yadav, M., Sasmal, S. and Bhunia, B. (2019) Optimization of Process Parameters for Production of Pectinase Using Bacillus subtilis MF447840.1. Recent Patents on Biotechnology, 13, 69-73.
https://doi.org/10.2174/1872208312666180917094428
[29]  Mohandas, A., Raveendran, S., Parameswaran, B., Abraham, A., Athira, R.S.R., Mathew, A.K., et al. (2018) Production of Pectinase from Bacillus sonorensis MPTD1. Food Technology and Biotechnology, 56, 110-116.
https://doi.org/10.17113/ftb.56.01.18.5477
[30]  Kundu, A. and Majumdar, B. (2018) Optimization of the Cellulase Free Xylanase Production by Immobilized Bacillus Pumilus. Iranian Journal of Biotechnology, 16, e1658.
https://doi.org/10.21859/ijb.1658
[31]  Sun, L., Cao, J., Liu, Y., Wang, J., Guo, P. and Wang, Z. (2017) Gene Cloning and Expression of Cellulase of Bacillus amyloliquefaciens Isolated from the Cecum of Goose. Animal Biotechnology, 28, 74-82.
https://doi.org/10.1080/10495398.2016.1205594
[32]  Hur, S.J., Lee, S.Y., Kim, Y.C., Choi, I. and Kim, G.B. (2014) Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chemistry, 160, 346-356.
https://doi.org/10.1016/j.foodchem.2014.03.112
[33]  Yao, Z., Kim, J.A. and Kim, J.H. (2019) Characterization of a Fibrinolytic Enzyme Secreted by Bacillus velezensis BS2 Isolated from Sea Squirt Jeotgal. Journal of Microbiology and Biotechnology, 29, 347-356.
https://doi.org/10.4014/jmb.1810.10053
[34]  Heo, K., Cho, K.M., Lee, C.K., Kim, G.M., Shin, J.H., Kim, J.S., et al. (2013) Characterization of a Fibrinolytic Enzyme Secreted by Bacillus amyloliquefaciens CB1 and Its Gene Cloning. Journal of Microbiology and Biotechnology, 23, 974-983.
https://doi.org/10.4014/jmb.1302.02065
[35]  Radhakrishnan, R., Hashem, A. and Abd Allah, E.F. (2017) Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology, 8, 667.
https://doi.org/10.3389/fphys.2017.00667

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133