全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anticorrosion of WO3-Modified TiO2 Thin Film Prepared by Peroxo Sol-Gel Method

DOI: 10.4236/mrc.2020.93003, PP. 35-46

Keywords: Anticorrosion, Photocatalyst, Nanocoating, WO3-TiO2, Coating, Sol-Gel Method, Nanomaterial

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this study was to develop a method to prepare WO3-TiO2 film which has high anticorrosion property when it was coated on type 304 stainless steel. A series of WO3-modified TiO2 sols were synthesized by peroxo-sol gel method using TiCl4 and Na2WO4 as the starting materials. TiCl4 was converted to Ti(OH)4 gel. H2O2 and Na2WO4 were added in Ti(OH)4 solution and heated at 95°C. The WO3-TiO2 sol was transparent, in neutral (pH~7) solution, stable suspension without surfactant, nano-crystallite and no annealing is needed after coating, and very stable for 2 years in stock. WO3-TiO2 sol was formed with anatase crystalline structure. These sols were characterized by XRD, TEM, and XPS. The sol was used to coat on stainless steel 304 by dip-coating. The

References

[1]  Shan, C.X., Hou, X. and Choy, K.L. (2008) Corrosion Resistance of TiO2 Films Grown on Stainless Steel by Atomic Layer Deposition. Surface and Coatings Technology, 202, 2399-2402.
https://doi.org/10.1016/j.surfcoat.2007.08.066
[2]  Yuan, J. and Tsujikawa, S. (1995) Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates. Journal of Electrochemical Society, 142, 3444-3455.
https://doi.org/10.1149/1.2050002
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.846.8347&rep=rep1&type=pdf
[3]  Tatsuma, T., Saitoh, S., Ohko, Y. and Fujishima, A. (2001) TiO2-WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability. Chemistry of Materials, 13, 2838-2842.
https://doi.org/10.1021/cm010024k
[4]  Ngaotrakanwiwat, P., Tatsuma, T., Saitoh, S., Ohko, Y. and Fujishima, A. (2003) Charge-Discharge Behavior of TiO2-WO3 Photocatalysis Systems with Energy Storage Ability. Physical Chemistry and Chemical Physics, 5, 3234-3237.
https://pubs.rsc.org/en/content/articlelanding/2003/cp/b304181f#!divAbstract
https://doi.org/10.1039/B304181F
[5]  Kalidindi, N.R., Manciu, F.S. and Ramana, C.V. (2011) Crystal Structure, Phase, and Electrical Conductivity of Nanocrystalline W0.95Ti0.05O3 Thin Films. ACS Applied Materials Interfaces, 3, 863-868.
https://doi.org/10.1021/am101209d
[6]  Yang, Y. and Cheng, Y.F. (2020) Visible Light Illuminated High-Performance WO3-TiO2-BiVO4 Nanocomposite Photoanodes Capable of Energy Self-Storage for Photo-Induced Cathodic Protection. Corrosion Science, 164, 108333-108340.
https://www.sciencedirect.com/science/article/abs/pii/S0010938X19317160
https://doi.org/10.1016/j.corsci.2019.108333
[7]  Zhao, D., Chen, C., Yu, C., Ma, W. and Zhao, J. (2009) Photoinduced Electron Storage in WO3/TiO2 Nanohybrid Material in the Presence of Oxygen and Postirradiated Reduction of Heavy Metal Ions. Journal Physical Chemistry C, 113, 13160-13165.
https://doi.org/10.1021/jp9002774
[8]  Couselo, N., Einschlag, F.S.G., Candal, R.J. and Jobbágy, M. (2008) Tungsten-Doped TiO2 vs. Pure TiO2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism. Journal Physical Chemistry C, 112, 1094-1100.
[9]  Tatsuma, T., Saitoh, S., Ngaotrakanwiwat, P., Ohko, Y. and Fujishima, A. (2002) Energy Storage of TiO2-WO3 Photocatalysis Systems in the Gas Phase. Langmuir, 18, 7777-7779.
https://doi.org/10.1021/la026011i
[10]  Park, H., Kim, K.Y. and Choi, W. (2002) Photoelectrochemical Approach for Metal Corrosion Prevention Using a Semiconductor Photoanode. Journal Physical Chemistry B, 106, 4775-4781.
https://doi.org/10.1021/jp025519r
[11]  Wang, X., Xu, H., Nan, Y., Sun, X., Duan, J., Huang, Y. and Hou, B. (2020) Research Progress of TiO2 Photocathodic Protection to Metals in Marine Environment. Journal of Oceanology and Limnology, 38, 1018-1044.
https://www.researchgate.net/publication/342848348_Research_progress_of_TiO2_
photocathodic_protection_to_metals_in_marine_environment
https://doi.org/10.1007/s00343-020-0110-x
[12]  Xia, Y., Cheng, H., Duo, L., Zhang, D., Chen, X., Shi, S. and Lei, L. (2020) Anticorrosion Reinforcement of Waterborne Polyacrylate Coating with Nano-TiO2 Loaded Graphene. Journal of Applied Polymer Science, 137, 48733-48740.
https://doi.org/10.1002/app.48733
[13]  Krishnan, A., Joseph, B., Bhaskar, K.M., Suma, M.S. and Shibli, S.M.A. (2019) Unfolding the Anticorrosive Characteristics of TiO2-WO3 Mixed Oxide Reinforced Polyaniline Composite Coated Mild Steel in Alkaline Environment. Polymer Composites, 40, 2400-2409.
https://doi.org/10.1002/pc.25103
[14]  Liang, Y., Guan, Z.C., Wang, H.P. and Du, R.G. (2017) Enhanced Photoelectrochemical Anticorrosion Performance of WO3/TiO2 Nanotube Composite Films Formed by Anodization and Electrodeposition. Electrochemitry Communications, 77, 120-123.
https://www.sciencedirect.com/science/article/pii/S1388248117300693
https://doi.org/10.1016/j.elecom.2017.03.008
[15]  Obstarczyk, A., Mazur, M., Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Grobelny, M. and Kalisz, M. (2020) Influence of Post-process Annealing Temperature on Structural, Optical, Mechanical and Corrosion Properties of Mixed TiO2-WO3 Thin Films. Thin Solid Films, 698, e137856.
https://doi.org/10.1016/j.tsf.2020.137856
https://www.sciencedirect.com/science/article/abs/pii/S0040609020300717
[16]  Ashoka, N.B., Swamy, B.E.K., Jayadevappa, H. and Sharma, S.C. (2020) Simultaneous Electroanalysis of Dopamine, Paracetamol and Folic Acid Using TiO2-WO3 Nanoparticle Modified Carbon Paste Electrode. Journal of Electroanalytical Chemistry, 859, e113819.
https://doi.org/10.1016/j.jelechem.2020.113819
https://www.sciencedirect.com/science/article/abs/pii/S1572665720300023
[17]  Abdeen, D.H., Hachach, M.E., Koc, M. and Atieh, M.A. (2019) A Review on the Corrosion Behaviour of Nanocoatings on Metallic Substrates. Materials, 12, 210.
https://pubmed.ncbi.nlm.nih.gov/30634551/
https://doi.org/10.3390/ma12020210
[18]  Sasirekha, N., Rajesh, B. and Chen, Y.W. (2009) Synthesis of TiO2 Sol in a Neutral Solution Using TiCl4 as a Precursor and H2O2 as an Oxidizing Agent. Thin Solid Films, 518, 43-48.
https://doi.org/10.1016/j.tsf.2009.06.015
https://www.sciencedirect.com/science/article/abs/pii/S0040609009010554
[19]  Tryba, B., Piszcz, M. and Morawsk, A.W. (2009) Photocatalytic Activity of TiO2-WO3 Composites. International Journal of Photoenergy, 2009, Article ID: 297319.
https://doi.org/10.1155/2009/297319
https://www.researchgate.net/publication/26844164_Photocatalytic_Activity_of_TiO2-WO3_Composites

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133