全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Calibration and Validation of the SWAT Model on the Watershed of Bafing River, Main Upstream Tributary of Senegal River: Checking for the Influence of the Period of Study

DOI: 10.4236/ojmh.2020.104006, PP. 81-104

Keywords: SWAT, Hydrological Modelling, Senegal River, Bafing Makana

Full-Text   Cite this paper   Add to My Lib

Abstract:

Management of reservoir water resources requires the knowledge of flow inputs in this reservoir. Hydrological rainfall-runoff model is used for this purpose. There are several types of hydrological model according the description of the hydrological processes: black-box models, conceptual models, deterministic physical based model. SWAT is a semi-distributed hydrological model designed for water quality and quantity. This versatile tool has been used all around the world to assess and manage water resources. The main objective of the paper is to calibrate and validate the SWAT model on the watershed of Bafing located between 10°30' and 12°30' north latitude and between 12°30' and 9°30' west longitude to assess climate change on this river flows. A DEM with a resolution of 12.5 m × 12.5 m, the daily average flows and the daily observed precipitations on the period 1979-1986 (long period) are used as inputs for the calibration, while precipitations for the period 1988-1994 are used for the validation. The sensitivity analysis was done to detect the most determining coefficients during the calibration step. It shows that 19 parameters are required. Then, the effect of the period on the parameters calibration is checked by considering first the whole period of study and then each year of the period of study. The Nash criterion was used to compare the calculated and the observed hygrographs in each case. The results showed that the longer is the period of calibration, the more accurate is the Nash criterion. The calibration per year gave a best Nash criterion except for a single year. During the validation, the parameters calculated on the long period lead to the best Nash criterion. The values of the Nash criterion calibration and validation are very suitable. These results of calibration can be used to study

References

[1]  Loliyana, V.D. (2015) Lumped Conceptual Hydrological Model for Purna River Basin, India. Sadhana, 40, 2411-2428.
[2]  Onate-Valdivieso, F., Bosque-Sendra, J., Sastre-Meruor, A. and Ponce, V.M. (2015) Calibration, Validation and Evaluation of a LUMPED Hydrologic Model in a Mountain Area in Southern Ecuado. Agrociencia, 50, 915-963.
[3]  Gan, T.Y., Gusev, Y., Burghes, S.J. and Nasanova, O. (2006) Performance Comparison of a Complex Physics-Based Land Surface Model and a Conceptual, Lumped-Parameter Hydrological Model at the Basin-Scale. IAHS-AISH Publication, 307, 196-207.
[4]  Ntoandis, L.I. and Mimikou, M.A. (2013) Intercomparisons of the Lumped versus Semi-Distributed HEC-HMS Hydrological Model in the Kalamus Rivers Basin. Proceedings of Environmental Science and Technology, Athens, 5-7 September 2013, 1-8.
[5]  Jain, M. and Sharma, S.T. (2014) Hydrological Modeling of Vam Sadhara River Basin, India, Using SWAT. International Conference on Emerging Trends in Computer and Image Processing (ICETCIP 2014), Paltaya, 15-16 December 2014, 82-86.
[6]  Islam, Z. (2011) A Review on Physically Based Hydrologic Modelling. Department of Civil Engineering, University of Alberta, Alberta.
[7]  Salou, B.I.G. (2009) Estimation des apports au lac saint-charles à l'aide du modèle hydrologique swat. Mémoire présenté à la Faculté des études supérieures de l'Université Laval dans le cadre du programme de maitrise en génie civil pour l'obtention du grade de Maitre es sciences. Université Laval, Québec.
[8]  Givati1, A., Gochis, D., Rummler, T. and Kunstmann, H. (2016) Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology, 3, 19.
https://doi.org/10.3390/hydrology3020019
[9]  Bhuiyan, H.A.K.M., Mcnairn, H., Powers, J. and Merzouki, A. (2017) Application of HEC-HMS in a Cold Region Watershed and Use of RADARSAT-2 Soil Moisture in Initializing the Model. Hydrology, 4, 9.
https://doi.org/10.3390/hydrology4010009
[10]  Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y. and Yao, A. (2012) Multi-Site Calibration, Validation, and Sensitivity Analysis of the MIKE SHE Model for a Large Watershed in Northern China. Hydrology and Earth System Sciences, 16, 4621-4632.
http://www.hydrol-earth-syst-sci.net/16/4621/2012/
https://doi.org/10.5194/hess-16-4621-2012
[11]  Li, Y.Q., Zhang, S.H. and Peng, Y. (2015) Soil Erosion and Its Relationship to the Spatial Distribution of Land Use Patterns in the Lancang River Watershed, Yunnan Province, China. Agricultural Sciences, 6, 823-833.
https://doi.org/10.4236/as.2015.68080
[12]  Chuenchooklin, S. and Pangnakorn, U. (2016) Application of Inflow Model for Weir Irrigation System without Upstream Dam. World Journal of Engineering and Technology, 4, 1-6.
https://doi.org/10.4236/wjet.2016.43B001
[13]  Mekonnen, B.A., Nazemi, A., Mazurek, K.A., Elshorbagy, A. and Putz, G. (2015) Hybrid Modelling Approach to Prairie Hydrology: Fusing Data-Driven and Process-Based Hydrological Models. Hydrological Sciences Journal, 60, 1473-1489.
https://doi.org/10.1080/02626667.2014.935778
[14]  Rostamian, R., Jaleh, A., Jidafyuni, M., Mousavi, S.F., Heidarpour, M., Jalalian, A. and Abbaspour, K.C. (2008) Application of a SWAT Model for Estimating Runoff and Sediment in Two Mountainous Basins in Central Iran. Hydrological Sciences Journal, 53, 977-988.
https://doi.org/10.1623/hysj.53.5.977
[15]  Khanal, S. and Parajuli, P.B. (2013) Evaluating the Impacts of Forest Clear Cutting on Water and Sediment Yields Using SWAT in Mississippi. Journal of Water Resource and Protection, 5, 474-483.
https://doi.org/10.4236/jwarp.2013.54047
[16]  Bieger, K., Hormann, G. and Fohrer, N. (2015) Detailed Spatial Analysis of SWAT-Simulated Surface Runoff and Sediment Yield in a Mountainous Watershed in China. Hydrological Sciences Journal, 60, 784-800.
https://doi.org/10.1080/02626667.2014.965172
[17]  Schuol, J. and Abbaspour, K.C. (2006) Calibration and Uncertainty Issues of a Hydrological Model (SWAT) Applied to West Africa. Advanced in Geosciences, 9, 137-143.
https://doi.org/10.5194/adgeo-9-137-2006
[18]  Krysanova, V. and White, M. (2015) Advances in Water Resources Assessment with SWAT—An Overview. Hydrological Sciences Journal, 60, 771-783.
[19]  Gyamfi, C., Ndambuki, J.M. and Salim, R.W. (2016) Application of SWAT Model to the Olifants Basin: Calibration, Validation and Uncertainty Analysis. Journal of Water Resource and Protection, 8, 397-410.
https://doi.org/10.4236/jwarp.2016.83033
[20]  Dai, J.-F., Chen, J.-Z., Lu, G.-A., Brown, L.C., Gan, L. and Xu, Q.-X. (2017) Application of SWAT992 to Sensitivity Analysis of Water Balance Components in Unique Plots in a Hilly Region. Water Science and Engineering, 10, 209-216.
https://doi.org/10.1016/j.wse.2017.09.002
[21]  Xue, L.J., Li, L.J. and Zhang, Q. (2008) Hydrological Behaviour and Water Balance Analysis for Xitiaoxi Catchment of Taihu Basin. Water Science and Engineering, 1, 44-53.
[22]  Stehr, A., Debels, P., Romero, F. and Alcayaga, H. (2008) Hydrological Modelling with SWAT under Conditions of Limited Data Availability: Evaluation of Results from a Chilean Case Study. Hydrological Sciences Journal, 53, 588-601.
https://doi.org/10.1623/hysj.53.3.588
[23]  Tadesse, W., Whitaker, S., Crosson, W. and Wilson, C. (2015) Assessing the Impact of Land-Use Land-Cover Change on Stream Water and Sediment Yields at a Watershed Level Using SWAT. Open Journal of Modern Hydrology, 5, 68-85.
https://doi.org/10.4236/ojmh.2015.53007
[24]  Jothiprakash, V., Praveenkumar, C. and Manasa. M. (2017) Daily Runoff Estimation in Musi River Basin, India, from Gridded Rainfall Using SWAT Model. European Water, 57, 63-69.
[25]  Bachmann, J. (2015) Analyse de la sensibilité du modèle SWAT à la précision des données pédologiques sur deux bassins de Bourgogne (France): Modélisation à partir de la base Données sol Université de Bourgogne UMR 5561 Bio géosciences Mémoire d’ingénieur agronome.
[26]  Abbasa, N., Wasimia, S.A. and Al-Ansari, N. (2016) Assessment of Climate Change Impact on Water Resources of Lesser Zab, Kurdistan, Iraq Using SWAT Model. Engineering, 8, 697-715.
https://doi.org/10.4236/eng.2016.810064
[27]  Abbasa, N., Wasimia, S.A. and Al-Ansari, N. (2016) Assessment of Climate Change Impacts on Water Resources of Al-Adhaim, Iraq Using SWAT Model. Engineering, 8, 716-732.
https://doi.org/10.4236/eng.2016.810065
[28]  Mehan, S., Kannan, N., Neupane, R.P., Mcdaniel, R. and Kumar, S. (2016) Climate Change Impacts on the Hydrological Processes of a Small Agricultural Watershed. Climate, 4, 56.
https://www.mdpi.com/journal/climate
https://doi.org/10.3390/cli4040056
[29]  Fontaine, T.A., Klassen, J.F., Cruickshank, T.S. and Hotchkiss, R.H. (2001) Hydrological Response to Climate Change in the Black Hills of South Dakota. Hydrological Sciences Journal, 46, 27-40.
https://doi.org/10.1080/02626660109492798
[30]  Bouslihim, Y., Kacimi, I., Brirhet, H., Khatati, M., Rochdi, A., Pazza, N.E.A., Miftah, A. and Yaslo, Z. (2016) Hydrologic Modeling Using SWAT and GIS, Application to Subwatershed Bab-Merzouka (Sebou, Morocco). Journal of Geographic Information System, 8, 20-27.
https://doi.org/10.4236/jgis.2016.81002
[31]  Anaba, L.A., Banadda, N., Kiggundu, N., Wanyama, J., Engel, B. and Moriasi, D. (2017) Application of SWAT to Assess the Effects of Land Use Change in the Murchison Bay Catchment in Uganda. Computational Water, Energy, and Environmental Engineering, 6, 24-40.
https://doi.org/10.4236/cweee.2017.61003
[32]  Badji, A.M. (2007) Modélisation de la relation pluie-débit et prévision des crues et des étiages sur l’exemple du bassin versant de la Falémé. Mémoire de DEA en vue d’obtenir le Diplome d’Etude Approfondie en physique. Université Cheikh Anta DIOP de Dakar, Dakar.
[33]  Cisse, S. (2009) étude du fonctionnement hydrologique du bassin de la Falémé en amont de Kidira: Application du modèle hydrologique distribué SWAT. Mémoire de DEA en vue d’obtenir le Diplome d’Etude Approfondie en physique. Université Cheikh Anta DIOP de Dakar, Dakar.
[34]  Boye, M. (2009) Modélisation de la relation pluie-débit dans le bassin amont du fleuve Sénégal. Mémoire de DEA en vue d’obtenir le Diplome d’Etude Approfondie en physique. Université Cheikh Anta DIOP de Dakar, Dakar.
[35]  OMVS (2013) Actualisation de la monographie hydrologique du fleuve Sénégal. Rapport final février 2013.
[36]  Sane, M.L., Sambou, S., Ndione, D.M., Leye, I., Kane, S. and Badji, M.L. (2017) Analyse et traitement des séries de débits annuels et mensuels sur le Fleuve Sénégal en amont du barrage de Manantali: cas des stations de Bafing Makana et Dakka Saidou. Revue Ivoirienne des Sciences et Technologie, 30, 102-120.
https://revist.net/REVIST_30/REVIST_30_7.pdf
[37]  https://fr.climate-data.org/afrique/senegal-187/
[38]  Arnold, J.G. and Fohrer, N. (2005) Current Capabilities and Research Opportunities in Applied Watershed Modeling. Hydrological Processes, 19, 563-572.
https://doi.org/10.1002/hyp.5611
[39]  Mamo, K.H.M. and Jain, M.K. (2013) Runoff and Sediment Modeling Using SWAT in Gumera Catchment, Ethiopia. Open Journal of Modern Hydrology, 3, 196-205.
https://www.scirp.org/journal/ojmh
https://doi.org/10.4236/ojmh.2013.34024
[40]  Faiza, H., Mohamed, M., Gil, M. and Alaheddine, S. (2015) Modélisation de la qualité des eaux naturelles cas du barrage de Sidi M’Hamed Ben Aouda dans le bassin de l’oued Mina (Nord-Ouest d’Algérie) Article.
[41]  Da Silva, M.G., De Aguiar Netto, A.D.O., De Jesus Neves, R.J., Do Vasco, A.N., Almeida, C. and Faccioli, G.G. (2015) Sensitivity Analysis and Calibration of Hydrological Modeling of the Watershed Northeast Brazil. Journal of Environmental Protection, 6, 837-850. http://www.scirp.org/journal/jep
https://doi.org/10.4236/jep.2015.68076
[42]  Zang, X.S., Srinivasan, R. and Van Liew, M. (2009) On the Use of Multi-Algorithm, Genetically Adaptive Multi-Objective Method for Multi-Site Calibration of the SWAT Model. Hydrological Processes, 24, 955-969.
http://www.interscience.wiley.com
[43]  Omer, A., Wang, W.G., Basheer, A.K. and Yong, B. (2017) Integrated Assessment of the Impacts of Climate Variability and Anthropogenic Activities on River Runoff: A Case Study in the Hutuo River Basin, China. Hydrology Research, 482, 416-430.
https://doi.org/10.2166/nh.2016.229
[44]  Nolwenn, P. (2013) Ruissellement, érosion et inondation: Modélisation hydrologique du bassin versant de la Hyse et mise en place d’un partenariat. Rapport de stage 13 janvier 2003/13 juillet 2003.
[45]  Arias, R., Rodríguez-Blanco, M.L., Taboada-Castro, M.M., Nunes, J.P., Keizer, J.J. and Taboada-Castro, M.T. (2014) Water Resources Response to Changes in Temperature, Rainfall and CO2 Concentration: A First Approach in NW Spain. Water, 6, 3049-3067.
https://doi.org/10.3390/w6103049
[46]  Jin, H., Zhu, Q., Zhao, X.H. and Zhang, Y.B. (2016) Simulation and Prediction of Climate Variability and Assessment of the Response of Water Resources in a Typical Watershed in China. Water, 8, 490.
http://www.mdpi.com/journal/water
https://doi.org/10.3390/w8110490
[47]  Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G. (2007) The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. CARD Working Papers, 477.
http://lib.dr.iastate.edu/card_workingpapers/477
[48]  Ghoraba, S.M. (2015) Hydrological Modeling of the Simly Dam Watershed (Pakistan) Using GIS and SWAT Model 1110-0168 a 2015 Faculty of Engineering, Alexandria University. Production and Hosting by Elsevier B.V. This Is an Open Access Article under the CC BY-NC-ND License. http://dx.doi.org/10.1016/j.aej.2015.05.018
[49]  Guo, S.S., Zhu, Z. and Lyu, L. (2018) Effects of Climate Change and Human Activities on Soil Erosion in the Xihe River Basin, China. Water, 10, 1085.
http://www.mdpi.com/journal/water
https://doi.org/10.3390/w10081085
[50]  Grusson, Y. (2016) Modélisation de l’évolution hydroclimatique des flux et stocks d'eau verte et d’eau bleue du bassin versant de la Garonne. Thèse en cotutelle Doctorat en génie des eaux, 70-90.
[51]  Boithias, L., Sauvage, S., Lenica, A., Roux, H., Abbaspour, K.C., Larnier, K., Dartus, D. and Sánchez-Pérez, J.M. (2017) Simulating Flash Floods at Hourly Time-Step Using the SWAT Model. Water, 9, 929.
http://www.mdpi.com/journal/water
https://doi.org/10.3390/w9120929
[52]  Jha, M. (2009) Hydrologic Simulations of the Maquoketa River Watershed Using SWAT Working Paper 09-WP 492 June 2009. Center for Agricultural and Rural Development, Iowa State University, Ames, IA.
https://www.card.iastate.edu/products/publications/pdf/09wp492.pdf
[53]  Jain, S.K., Tyagi, J. and Singh, V. (2010) Simulation of Runoff and Sediment Yield for a Himalayan Watershed Using SWAT Model. Journal of Water Resource and Protection, 2, 267-281.
http://www.scirp.org/journal/jwarp
https://doi.org/10.4236/jwarp.2010.23031
[54]  Mathevet, T., Michel, C., Andréassian, V. and Perrin, C. (2006) A Bounded Version of the Nash-Sutcliffe Criterion for Better Model Assessment on Large Sets of Basins. In: Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment-MOPEX, IAHS Publication 307, AISH, 211-219.
[55]  Sood, A., Muthuwatta, L. and McCartney, M. (2013). A SWAT Evaluation of the Effect of Climate Change on the Hydrology of the Volta River Basin. Water International, 38, 297–311.
https://doi.org/10.1080/02508060.2013.792404
[56]  Mishra, A., Singh, R. and Singh, V.P. (2010) Evaluation of Non-Point Source N and P Loads in a Small Mixed Land Use Land Cover Watershed. Journal of Water Resource and Protection, 2, 362-372.
https://doi.org/10.4236/jwarp.2010.24042

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133